Rhapsody: predicting the pathogenicity of human missense variants

被引:51
|
作者
Ponzoni, Luca [1 ]
Penaherrera, Daniel A. [1 ]
Oltvai, Zoltan N. [1 ,2 ,3 ]
Bahar, Ivet [1 ]
机构
[1] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA
[3] Univ Minnesota, Dept Lab Med & Pathol, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
DATABASE; DYNAMICS; SERVER; DBNSFP; IMPACT; GENE;
D O I
10.1093/bioinformatics/btaa127
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results: Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
引用
收藏
页码:3084 / 3092
页数:9
相关论文
共 50 条
  • [21] A quantitative model to predict pathogenicity of missense variants in the TP53 gene
    Fortuno, Cristina
    Cipponi, Arcadi
    Ballinger, Mandy L.
    Tavtigian, Sean, V
    Olivier, Magali
    Ruparel, Vatsal
    Haupt, Ygal
    Haupt, Sue
    Tucker, Kathy
    Spurdle, Amanda B.
    Thomas, David M.
    James, Paul A.
    HUMAN MUTATION, 2019, 40 (06) : 788 - 800
  • [22] Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria
    Brennenstuhl, Heiko
    Nashawi, Mohammed
    Schroeter, Julian
    Baronio, Federico
    Beedgen, Lars
    Gleich, Florian
    Jeltsch, Kathrin
    von Landenberg, Christina
    Martini, Silvia
    Simon, Anna
    Thiel, Christian
    Tsiakas, Konstantinos
    Opladen, Thomas
    Koelker, Stefan
    Hoffmann, Georg F.
    Haas, Dorothea
    JOURNAL OF INHERITED METABOLIC DISEASE, 2021, 44 (05) : 1272 - 1287
  • [23] Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity
    Cheng, Hanyin
    Capponi, Simona
    Wakeling, Emma
    Marchi, Elaine
    Li, Quan
    Zhao, Mengge
    Weng, Chunhua
    Stefan, Piatek G.
    Ahlfors, Helena
    Kleyner, Robert
    Rope, Alan
    Lumaka, Aime
    Lukusa, Prosper
    Devriendt, Koenraad
    Vermeesch, Joris
    Posey, Jennifer E.
    Palmer, Elizabeth E.
    Murray, Lucinda
    Leon, Eyby
    Diaz, Jullianne
    Worgan, Lisa
    Mallawaarachchi, Amalia
    Vogt, Julie
    de Munnik, Sonja A.
    Dreyer, Lauren
    Baynam, Gareth
    Ewans, Lisa
    Stark, Zornitza
    Lunke, Sebastian
    Goncalves, Ana R.
    Soares, Gabriela
    Oliveira, Jorge
    Fassi, Emily
    Willing, Marcia
    Waugh, Jeff L.
    Faivre, Laurence
    Riviere, Jean-Baptiste
    Moutton, Sebastien
    Mohammed, Shehla
    Payne, Katelyn
    Walsh, Laurence
    Begtrup, Amber
    Sacoto, Maria J. Guillen
    Douglas, Ganka
    Alexander, Nora
    Buckley, Michael F.
    Mark, Paul R.
    Ades, Lesley C.
    Sandaradura, Sarah A.
    Lupski, James R.
    HUMAN MUTATION, 2020, 41 (02) : 449 - 464
  • [24] A yeast based assay establishes the pathogenicity of novel missense ACTA2 variants associated with aortic aneurysms
    Calderan, Cristina
    Sorrentino, Ugo
    Persano, Luca
    Trevisson, Eva
    Sartori, Geppo
    Salviati, Leonardo
    Desbats, Maria Andrea
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (07) : 804 - 812
  • [25] DS-MVP: identifying disease-specific pathogenicity of missense variants by pre-training representation
    Chen, Qiufeng
    Quan, Lijun
    Cao, Lexin
    Zhang, Bei
    Zhang, Zhijun
    Peng, Liangchen
    Wang, Junkai
    Jiang, Yelu
    Nie, Liangpeng
    Li, Geng
    Wu, Tingfang
    Lyu, Qiang
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [26] Improving the in silico assessment of pathogenicity for compensated variants
    Azevedo, Luisa
    Mort, Matthew
    Costa, Antonio C.
    Silva, Raquel M.
    Quelhas, Dulce
    Amorim, Antonio
    Cooper, David N.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (01) : 2 - 7
  • [27] In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants
    Kumari, Poonam
    Rameshwari, Rashmi
    JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY, 2022, 20 (01)
  • [28] A computational study to assess the pathogenicity of single or combinations of missense variants on respiratory complex I
    Rigobello, Laura
    Lugli, Francesca
    Caporali, Leonardo
    Bartocci, Alessio
    Fadanni, Jacopo
    Zerbetto, Francesco
    Iommarini, Luisa
    Carelli, Valerio
    Ghelli, Anna Maria
    Musiani, Francesco
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 273
  • [29] Determining the pathogenicity of CFTR missense variants: Multiple comparisons of in silico Tpredictors and variant annotation databases
    Michels, Marcus
    Matte, Ursula
    Fraga, Lucas Rosa
    Branco Mancuso, Aline Castello
    Ligabue-Braun, Rodrigo
    Rodrigues Berneira, Elias Figueroa
    Siebert, Marina
    Sanseverino, Maria Teresa
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 560 - 570
  • [30] Functional characterization of all CDKN2A missense variants and comparison to in silico models of pathogenicity
    Kimura, Hirokazu
    Lahouel, Kamel
    Tomasetti, Cristian
    Roberts, Nicholas Jason
    ELIFE, 2025, 13