Dual Layer Voting Method for Efficient Multi-label Classification

被引:0
|
作者
Madjarov, Gjorgji [1 ,2 ]
Gjorgjevikj, Dejan [1 ]
Dzeroski, Saso [2 ]
机构
[1] Ss Cyril & Methodius Univ, FEEIT, Skopje, Macedonia
[2] Jozef Stefan Inst, DKT, Ljubljana, Slovenia
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011 | 2011年 / 6669卷
关键词
Multi-label classification; calibration label; calibrated label ranking; voting strategy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A common approach for solving multi-label classification problems using problem-transformation methods and dichotomizing classifiers is the pairwise decomposition strategy. One of the problems with this approach is the need for querying a quadratic number of binary classifiers for making a prediction that can be quite time consuming, especially in classification problems with large number of labels. To tackle this problem we propose a Dual Layer Voting Method (DLVM) for efficient pair-wise multiclass voting to the multi-label setting, which is related to the calibrated label ranking method. Five different real-world datasets (enron, tmc2007, genbase, mediamill and corel5k) were used to evaluate the performance of the DLVM. The performance of this voting method was compared with the majority voting strategy used by the calibrated label ranking method and the quick weighted voting algorithm (QWeighted) for pair-wise multi-label classification. The results from the experiments suggest that the DLVM significantly outperforms the concurrent algorithms in term of testing speed while keeping comparable or offering better prediction performance.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 50 条
  • [41] Multi-label classification of music by emotion
    Konstantinos Trohidis
    Grigorios Tsoumakas
    George Kalliris
    Ioannis Vlahavas
    EURASIP Journal on Audio, Speech, and Music Processing, 2011
  • [42] Metric Learning for Multi-label Classification
    Brighi, Marco
    Franco, Annalisa
    Maio, Dario
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 24 - 33
  • [43] Hyperspherical Learning in Multi-Label Classification
    Ke, Bo
    Zhu, Yunquan
    Li, Mengtian
    Shu, Xiujun
    Qiao, Ruizhi
    Ren, Bo
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 38 - 55
  • [44] Multi-Label Classification With Hyperdimensional Representations
    Chandrasekaran, Rishikanth
    Asgareinjad, Fatemeh
    Morris, Justin
    Rosing, Tajana
    IEEE ACCESS, 2023, 11 : 108458 - 108474
  • [45] Source Detection With Multi-Label Classification
    Vijayamohanan, Jayakrishnan
    Gupta, Arjun
    Noakoasteen, Oameed
    Goudos, Sotirios K. K.
    Christodoulou, Christos G.
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 336 - 345
  • [46] Detection and Multi-label Classification of Bats
    Dierckx, Lucile
    Beauvois, Melanie
    Nijssen, Siegfried
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 53 - 65
  • [47] Multi-label Classification for Past Events
    Sumikawa, Yasunobu
    Ikejiri, Ryohei
    2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 562 - 567
  • [48] Multi-label Scientific Document Classification
    Ali, Tariq
    Asghar, Sohail
    JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (06): : 1707 - 1716
  • [49] Compact learning for multi-label classification
    Lv, Jiaqi
    Wu, Tianran
    Peng, Chenglun
    Liu, Yunpeng
    Xu, Ning
    Geng, Xin
    PATTERN RECOGNITION, 2021, 113
  • [50] Interdependence Model for Multi-label Classification
    Yoshimura, Kosuke
    Iwase, Tomoaki
    Baba, Yukino
    Kashima, Hisashi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 55 - 68