m Moduli of Smoothness Related to the Laplace-Operator

被引:5
作者
Runovski, Konstantin [1 ]
Schmeisser, Hans-Juergen [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Sevastopol Branch, UA-99001 Sevastopol, Ukraine
[2] Univ Jena, D-07737 Jena, Germany
关键词
Trigonometric approximation; Fourier multipliers; Moduli of smoothness; K-functionals; Jackson- and Bernstein-type theorems; Bochner-Riesz means and families; APPROXIMATION;
D O I
10.1007/s00041-014-9373-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study a series of new moduli of smoothness in the multivariate case in L-p-spaces of periodic functions. The main focus lies on the case 0 < p < 1. We prove a direct Jackson-type estimate and provide necessary and sufficient conditions with respect to the dimension d and to integrability p for the equivalence of these moduli and polynomial K-functionals related to the Laplace-operator. As a consequence we obtain an inverse Bernstein-type estimate. Moreover, we are able to characterize the approximation error in case of approximation by families of linear polynomial operators which are generated by Bochner-Riesz kernels in terms of the introduced moduli.
引用
收藏
页码:449 / 471
页数:23
相关论文
共 13 条
[1]  
DeVore Ronald A., 1993, Constructive Approximation, V303
[2]   Realization and smoothness related to the Laplacian [J].
Ditzian, Z ;
Runovskii, K .
ACTA MATHEMATICA HUNGARICA, 2001, 93 (03) :189-223
[3]   STRONG CONVERSE INEQUALITIES [J].
DITZIAN, Z ;
IVANOV, KG .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 61 :61-111
[4]   A MEASURE OF SMOOTHNESS RELATED TO THE LAPLACIAN [J].
DITZIAN, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (01) :407-422
[5]   MODULI OF SMOOTHNESS AND K-FUNCTIONALS IN L(P), 0-LESS-THAN-P-LESS-THAN-1 [J].
DITZIAN, Z ;
HRISTOV, VH ;
IVANOV, KG .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (01) :67-83
[6]  
Hristov V.H., 1990, MATH BALKANICA, V4, P236
[7]   Approximation by families of linear trigonometric polynomial operators and smoothness properties of functions [J].
Rukasov, Vladimir ;
Runovski, Konstantin ;
Schmeisser, Hans-Juergen .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (11-12) :1523-1537
[8]   ON CONVERGENCE OF FAMILIES OF LINEAR POLYNOMIAL OPERATORS [J].
Rukasov, Vladimir I. ;
Runovski, Konstantin V. ;
Schmeisser, Hans-Jurgen .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 41 (01) :41-54
[9]  
Runovski K., 2001, GEORGIAN MATH J, V8, P165
[10]  
Runovski K., 2001, FUNCT APPROX COMMENT, V29, P125, DOI DOI 10.7169/FACM/1538186723