Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning

被引:1
作者
Soria-Ruiz, Jesus [1 ]
Fernandez-Ordonez, Yolanda M. [2 ]
Ambrosio-Ambrosio, Juan P. [1 ]
Escalona-Maurice, Miguel A. [2 ]
机构
[1] Natl Inst Res Forestry Agr & Livestock INIFAP, Zinacantepec 52107, Mexico
[2] Postgrad Coll Agr Sci COLPOS, Montecillo 56230, Mexico
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Flooding; Sentinel-1; SAR; Random Forest Machine Learning;
D O I
10.1109/IGARSS46834.2022.9884139
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research was carried out to identify the extent and depth of flooded areas using Sentinel-1 SAR, the Digital Elevation Model generated with LiDAR and Random Forest machine learning. Training and cross-validation was performed on a set of backscatter value samples obtained from Sentinel-1. The results indicate that out of five combinations, the Random Forest algorithm had the best performance when using the four combinations (RF + Polarization VH+VV + MDE) with F1m = 0.977, AUC = 0.998 and Kappa = 0.955. SAR images have potential advantages that allow rapid and efficient diagnosis of the extent of flooding caused by excess rainfall in many regions around world.
引用
收藏
页码:5113 / 5116
页数:4
相关论文
共 50 条
  • [41] AUTOMATED DETECTION OF SARGASSUM INVASIONS IN THE CARIBBEAN USING SENTINEL-1 SAR
    Biermann, Lauren
    Kurekin, Andrey
    Martin, Nicola
    Schreyers, Louise J.
    Clewley, Daniel
    Saha, Mahasweta
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1433 - 1437
  • [42] CV4FEE: Flood Extent Estimation Using Consensus Voting in Ensemble of Methods for Change Detection in Sentinel-1 GRD SAR Images
    Thangavel, Ragesh
    Sreevalsan-Nair, Jaya
    2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,
  • [43] A deep learning based oil spill detector using Sentinel-1 SAR imagery
    Yang, Yi-Jie
    Singha, Suman
    Mayerle, Roberto
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (11) : 4287 - 4314
  • [44] Assessment of inundation extent due to super cyclones Amphan and Yaas using Sentinel-1 SAR imagery in Google Earth Engine
    Mondal, Momsona
    Nanda, Manoj Kumar
    Pena-Arancibia, Jorge Luis
    Sarkar, Debolina
    Ghosh, Argha
    Goswami, Rupak
    Mukherjee, Asis
    Saha, Abhijit
    Brahmachari, Koushik
    Sarkar, Sukamal
    Mainuddin, Mohammed
    THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (6) : 5659 - 5675
  • [45] A novel change detection and threshold-based ensemble of scenarios pyramid for flood extent mapping using Sentinel-1 data
    Pedzisai, Ezra
    Mutanga, Onisimo
    Odindi, John
    Bangira, Tsitsi
    HELIYON, 2023, 9 (03)
  • [46] SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA
    Chini, Marco
    Pelich, Ramona
    Hostache, Renaud
    Matgen, Patrick
    Bossung, Christian
    Campanella, Paolo
    Rudari, Roberto
    Bally, Philippe
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3251 - 3254
  • [47] An Adaptive Thresholding Approach toward Rapid Flood Coverage Extraction from Sentinel-1 SAR Imagery
    Chen, Shujie
    Huang, Wenli
    Chen, Yumin
    Feng, Mei
    REMOTE SENSING, 2021, 13 (23)
  • [48] Delineating Smallholder Maize Farms from Sentinel-1 Coupled with Sentinel-2 Data Using Machine Learning
    Mashaba-Munghemezulu, Zinhle
    Chirima, George Johannes
    Munghemezulu, Cilence
    SUSTAINABILITY, 2021, 13 (09)
  • [49] Satellite-Based Flood Mapping through Bayesian Inference from a Sentinel-1 SAR Datacube
    Bauer-Marschallinger, Bernhard
    Cao, Senmao
    Tupas, Mark Edwin
    Roth, Florian
    Navacchi, Claudio
    Melzer, Thomas
    Freeman, Vahid
    Wagner, Wolfgang
    REMOTE SENSING, 2022, 14 (15)
  • [50] AN AUTOMATIC FLOOD MONITORING SERVICE FROM SENTINEL-1 SAR: PRODUCTS, DELIVERY PIPELINES, AND PERFORMANCE ASSESSMENT
    Meyer, Franz J.
    Ajadi, Olaniyi A.
    Schultz, Lori
    Bell, Jordan
    Arnoult, Ken M.
    Gens, Rudiger
    Nicoll, Jeremy B.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6576 - 6579