Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning

被引:1
作者
Soria-Ruiz, Jesus [1 ]
Fernandez-Ordonez, Yolanda M. [2 ]
Ambrosio-Ambrosio, Juan P. [1 ]
Escalona-Maurice, Miguel A. [2 ]
机构
[1] Natl Inst Res Forestry Agr & Livestock INIFAP, Zinacantepec 52107, Mexico
[2] Postgrad Coll Agr Sci COLPOS, Montecillo 56230, Mexico
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Flooding; Sentinel-1; SAR; Random Forest Machine Learning;
D O I
10.1109/IGARSS46834.2022.9884139
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research was carried out to identify the extent and depth of flooded areas using Sentinel-1 SAR, the Digital Elevation Model generated with LiDAR and Random Forest machine learning. Training and cross-validation was performed on a set of backscatter value samples obtained from Sentinel-1. The results indicate that out of five combinations, the Random Forest algorithm had the best performance when using the four combinations (RF + Polarization VH+VV + MDE) with F1m = 0.977, AUC = 0.998 and Kappa = 0.955. SAR images have potential advantages that allow rapid and efficient diagnosis of the extent of flooding caused by excess rainfall in many regions around world.
引用
收藏
页码:5113 / 5116
页数:4
相关论文
共 50 条
  • [21] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Suranjana B. Borah
    Thota Sivasankar
    M. N. S. Ramya
    P. L. N. Raju
    Environmental Monitoring and Assessment, 2018, 190
  • [22] Integration Sentinel-1 SAR data and machine learning for land subsidence in-depth analysis in the North Coast of Central Java']Java, Indonesia
    Yananto, Ardila
    Yulianto, Fajar
    Wibowo, Mardi
    Rahili, Nurkhalis
    Perdana, Dhedy Husada Fadjar
    Wiguna, Edwin Adi
    Prabowo, Yudhi
    Iswari, Marindah Yulia
    Ma'rufatin, Anies
    Fachrudin, Imam
    EARTH SCIENCE INFORMATICS, 2024, 17 (05) : 4707 - 4738
  • [23] Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India
    Kumar, Himanshu
    Karwariya, Sateesh Kumar
    Kumar, Rohan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (05) : 791 - 803
  • [24] Detection of Frozen Soil Using Sentinel-1 SAR Data
    Baghdadi, Nicolas
    Bazzi, Hassan
    El Hajj, Mohammad
    Zribi, Mehrez
    REMOTE SENSING, 2018, 10 (08):
  • [25] Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment
    Shivhare, Vikash
    Kumar, Alok
    Kumar, Reetesh
    Shashtri, Satyanarayan
    Mallick, Javed
    Singh, Chander Kumar
    NATURAL HAZARDS, 2024, 120 (13) : 11579 - 11610
  • [26] Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIV, 2018, 10789
  • [27] Flood Monitoring Using Sentinel-1 SAR for Agricultural Disaster Assessment in Poyang Lake Region
    Li, Hengkai
    Xu, Zikun
    Zhou, Yanbing
    He, Xiaoxing
    He, Minghua
    REMOTE SENSING, 2023, 15 (21)
  • [28] USING SENTINEL-1 SAR MEASUREMENTS TO DETECT HIGH RESOLUTION FREEZE AND THAW STATES IN ALASKA
    Azarderakhsh, Marzi
    McDonald, Kyle
    Norouzi, Hamid
    Barros, Adrian
    Arunyavikul, Patty
    Blake, Reginald
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2398 - 2399
  • [29] Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR
    Qiu, Junliang
    Cao, Bowen
    Park, Edward
    Yang, Xiankun
    Zhang, Wenxin
    Tarolli, Paolo
    REMOTE SENSING, 2021, 13 (07)
  • [30] STURM-Flood: a curated dataset for deep learning-based flood extent mapping leveraging Sentinel-1 and Sentinel-2 imagery
    Notarangelo, Nicla
    Wirion, Charlotte
    van Winsen, Frankwin
    BIG EARTH DATA, 2025,