Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning

被引:1
作者
Soria-Ruiz, Jesus [1 ]
Fernandez-Ordonez, Yolanda M. [2 ]
Ambrosio-Ambrosio, Juan P. [1 ]
Escalona-Maurice, Miguel A. [2 ]
机构
[1] Natl Inst Res Forestry Agr & Livestock INIFAP, Zinacantepec 52107, Mexico
[2] Postgrad Coll Agr Sci COLPOS, Montecillo 56230, Mexico
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Flooding; Sentinel-1; SAR; Random Forest Machine Learning;
D O I
10.1109/IGARSS46834.2022.9884139
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research was carried out to identify the extent and depth of flooded areas using Sentinel-1 SAR, the Digital Elevation Model generated with LiDAR and Random Forest machine learning. Training and cross-validation was performed on a set of backscatter value samples obtained from Sentinel-1. The results indicate that out of five combinations, the Random Forest algorithm had the best performance when using the four combinations (RF + Polarization VH+VV + MDE) with F1m = 0.977, AUC = 0.998 and Kappa = 0.955. SAR images have potential advantages that allow rapid and efficient diagnosis of the extent of flooding caused by excess rainfall in many regions around world.
引用
收藏
页码:5113 / 5116
页数:4
相关论文
共 50 条
  • [1] EXTENT AND DEPTH OF FLOODING USING SAR SENTINEL-1 AND MACHINE LEARNING ALGORITHMS
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Y. M.
    Ambrosio-Ambrosio, J. P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2246 - 2249
  • [2] Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images
    Chu, Yongjae
    Lee, Hoonyol
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (04) : 375 - 386
  • [3] Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan
    Zhang, Meimei
    Chen, Fang
    Liang, Dong
    Tian, Bangsen
    Yang, Aqiang
    SUSTAINABILITY, 2020, 12 (14) : 1 - 19
  • [4] Uncovering the Extent of Flood Damage using Sentinel-1 SAR Imagery: A Case Study of the July 2020 Flood in Assam
    Thirugnanasammandamoorthi, Puviyarasi
    Ghosh, Debabrata
    Dewangan, Ram Kishan
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 102 - 114
  • [5] Flood monitoring in an Giang Province, Vietnam using global flood mapper and Sentinel-1 SAR
    Afifi, Ahmed S.
    Magdy, Ahmed
    REMOTE SENSING LETTERS, 2024, 15 (09) : 883 - 892
  • [6] FLOOD DETECTION IN NORWAY BASED ON SENTINEL-1 SAR IMAGERY
    Reksten, J. H.
    Salberg, A-B
    Solberg, R.
    ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 349 - 355
  • [7] Estimating vegetation indices and biophysical parameters for Central European temperate forests with Sentinel-1 SAR data and machine learning
    Paluba, Daniel
    Le Saux, Bertrand
    Sarti, Francesco
    Stych, Premysl
    BIG EARTH DATA, 2025,
  • [8] A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery
    Liang, Jiayong
    Liu, Desheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 159 : 53 - 62
  • [9] A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery
    McCormack, T.
    Campanya, J.
    Naughton, O.
    REMOTE SENSING OF ENVIRONMENT, 2022, 282
  • [10] Flood Depth Estimation during Hurricane Harvey Using Sentinel-1 and UAVSAR Data
    Kundu, Sananda
    Lakshmi, Venkat
    Torres, Raymond
    REMOTE SENSING, 2022, 14 (06)