Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

被引:187
作者
Chen, Leiyi [1 ]
Liang, Junyi [2 ]
Qin, Shuqi [1 ,3 ]
Liu, Li [1 ,3 ]
Fang, Kai [1 ,3 ]
Xu, Yunping [4 ,5 ]
Ding, Jinzhi [1 ,3 ]
Li, Fei [1 ,3 ]
Luo, Yiqi [2 ]
Yang, Yuanhe [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Peking Univ, Coll Urban & Environm Sciecnces, Minist Educ, Key Lab Earth Surface Proc, Beijing 100871, Peoples R China
[5] Shanghai Ocean Univ, Coll Marine Sci, Shanghai Engn Res Ctr Hadal Sci & Technol, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
SOIL ORGANIC-MATTER; TRACE GAS-PRODUCTION; TEMPERATURE SENSITIVITY; CLIMATE-CHANGE; CO2; PRODUCTION; VULNERABILITY; TURNOVER; TUNDRA; THAW; MINERALIZATION;
D O I
10.1038/ncomms13046
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.
引用
收藏
页数:12
相关论文
共 68 条
[1]  
[Anonymous], 1996, METHODS SOIL ANAL PA, DOI [10.2136/sssabookser5.3.c34, DOI 10.2136/SSSABOOKSER5.3.C34]
[2]   Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation [J].
Billings, S. A. ;
Tiemann, L. K. ;
Ballantyne, E. ;
Lehmeier, C. A. ;
Min, K. .
SOIL, 2015, 1 (01) :313-330
[3]   Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns [J].
Bossio, DA ;
Scow, KM .
MICROBIAL ECOLOGY, 1998, 35 (03) :265-278
[4]   Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe [J].
Chen, Dima ;
Lan, Zhichun ;
Bai, Xue ;
Grace, James B. ;
Bai, Yongfei .
JOURNAL OF ECOLOGY, 2013, 101 (05) :1322-1334
[5]   Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska [J].
Chowdhury, Taniya Roy ;
Herndon, Elizabeth M. ;
Phelps, Tommy J. ;
Elias, Dwayne A. ;
Gu, Baohua ;
Liang, Liyuan ;
Wullschleger, Stan D. ;
Graham, David E. .
GLOBAL CHANGE BIOLOGY, 2015, 21 (02) :722-737
[6]   Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw [J].
Coolen, Marco J. L. ;
van de Giessen, Jeroen ;
Zhu, Elizabeth Y. ;
Wuchter, Cornelia .
ENVIRONMENTAL MICROBIOLOGY, 2011, 13 (08) :2299-2314
[7]   The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J].
Cotrufo, M. Francesca ;
Wallenstein, Matthew D. ;
Boot, Claudia M. ;
Denef, Karolien ;
Paul, Eldor .
GLOBAL CHANGE BIOLOGY, 2013, 19 (04) :988-995
[8]   Decoupling of soil nutrient cycles as a function of aridity in global drylands [J].
Delgado-Baquerizo, Manuel ;
Maestre, Fernando T. ;
Gallardol, Antonio ;
Bowker, Matthew A. ;
Wallenstein, Matthew D. ;
Luis Quero, Jose ;
Ochoa, Victoria ;
Gozalo, Beatriz ;
Garcia-Gomez, Miguel ;
Soliveres, Santiago ;
Garcia-Palacios, Pablo ;
Berdugo, Miguel ;
Valencia, Enrique ;
Escolar, Cristina ;
Arredondo, Turin ;
Barraza-Zepeda, Claudia ;
Bran, Donald ;
Antonio Carreiral, Jose ;
Chaieb, Mohamed ;
Conceicao, Abel A. ;
Derak, Mchich ;
Eldridge, David J. ;
Escudero, Adrian ;
Espinosa, Carlos I. ;
Gaitan, Juan ;
Gatica, M. Gabriel ;
Gomez-Gonzalez, Susana ;
Guzman, Elizabeth ;
Gutierrez, Julio R. ;
Florentino, Adriana ;
Hepper, Estela ;
Hernandez, Rosa M. ;
Huber-Sannwald, Elisabeth ;
Jankju, Mohammad ;
Liu, Jushan ;
Mau, Rebecca L. ;
Miriti, Maria ;
Monerris, Jorge ;
Naseri, Kamal ;
Noumi, Zouhaier ;
Polo, Vicente ;
Prina, Anibal ;
Pucheta, Eduardo ;
Ramirez, Elizabeth ;
Ramirez-Collantes, David A. ;
Romao, Roberto ;
Tighe, Matthew ;
Torres, Duiio ;
Torres-Diaz, Cristian ;
Ungar, Eugene D. .
NATURE, 2013, 502 (7473) :672-+
[9]   The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores [J].
Ding, Jinzhi ;
Li, Fei ;
Yang, Guibiao ;
Chen, Leiyi ;
Zhang, Beibei ;
Liu, Li ;
Fang, Kai ;
Qin, Shuqi ;
Chen, Yongliang ;
Peng, Yunfeng ;
Ji, Chengjun ;
He, Honglin ;
Smith, Pete ;
Yang, Yuanhe .
GLOBAL CHANGE BIOLOGY, 2016, 22 (08) :2688-2701
[10]  
Doetterl S, 2015, NAT GEOSCI, V8, P780, DOI [10.1038/ngeo2516, 10.1038/NGEO2516]