An elliptic divisibility sequence is an integer recurrence sequence associated to an elliptic curve over the rationals together with a rational point on that curve. In this paper we present a higher-dimensional analogue over arbitrary base fields. Suppose E is an elliptic curve over a field K, and P-1, ..., P-n are points on E defined over K. To this information we associate an n-dimensional array of values in K satisfying a nonlinear recurrence relation. Arrays satisfying this relation are called elliptic nets. We demonstrate an explicit bijection between the set of elliptic nets and the set of elliptic curves with specified points. We also obtain Laurentness/integrality results for elliptic nets.
机构:
Tokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, JapanTokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
Ogura, Naoki
Kanayama, Naoki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Fac Syst & Informat Engn, Tsukuba, Ibaraki 3058573, JapanTokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
Kanayama, Naoki
Uchiyama, Shigenori
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, JapanTokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
Uchiyama, Shigenori
Okamoto, Eiji
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Fac Syst & Informat Engn, Tsukuba, Ibaraki 3058573, JapanTokyo Metropolitan Univ, Grad Sch Sci & Engn, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
Okamoto, Eiji
ADVANCES IN INFORMATION AND COMPUTER SECURITY,
2011,
7038
: 65
-
+