Lattices and periodic geodesics in pseudoriemannian 2-step nilpotent Lie groups

被引:4
|
作者
Cordero, Luis A. [1 ]
Parker, Phillip E. [2 ]
机构
[1] Univ Santiago, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, Spain
[2] Wichita State Univ, Dept Math, Wichita, KS 67260 USA
关键词
pseudoriemannian geometry; 2-step nilpotent Lie group; periodic geodesics; lattices in nilpotent Lie group;
D O I
10.1142/S0219887808002667
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a basic treatment of lattices Gamma in these groups. Certain tori T-F and T-B provide the model fiber and the base for a submersion of Gamma\N. This submersion may not be pseudoriemannian in the usual sense, because the tori may be degenerate. We then begin the study of periodic geodesics in these compact nilmanifolds, obtaining a complete calculation of the period spectrum of certain flat spaces.
引用
收藏
页码:79 / 99
页数:21
相关论文
共 50 条
  • [21] Lattices and harmonic analysis on some 2-step solvable Lie groups
    Huang, H
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 77 - 89
  • [22] Clones of 2-step nilpotent groups
    Kearnes, Keith A.
    Shaw, Jason
    Szendrei, Agnes
    ALGEBRA UNIVERSALIS, 2008, 59 (3-4) : 491 - 512
  • [23] Clones of 2-step nilpotent groups
    Keith A. Kearnes
    Jason Shaw
    Ágnes Szendrei
    Algebra universalis, 2008, 59 : 491 - 512
  • [24] Positive Hermitian curvature flow on complex 2-step nilpotent Lie groups
    Pujia, Mattia
    MANUSCRIPTA MATHEMATICA, 2021, 166 (1-2) : 237 - 249
  • [25] Magnetic fields on non-singular 2-step nilpotent Lie groups
    Ovando, Gabriela P.
    Subils, Mauro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [26] NATURALLY REDUCTIVE PSEUDO-RIEMANNIAN 2-STEP NILPOTENT LIE GROUPS
    Ovando, Gabriela P.
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 147 - 167
  • [27] Positive Hermitian curvature flow on complex 2-step nilpotent Lie groups
    Mattia Pujia
    manuscripta mathematica, 2021, 166 : 237 - 249
  • [28] Purely coclosed G2-structures on 2-step nilpotent Lie groups
    del Barco, Viviana
    Moroianu, Andrei
    Raffero, Alberto
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 323 - 359
  • [29] Killing-Yano 2-forms on 2-step nilpotent Lie groups
    Andrada, Adrian
    Dotti, Isabel G.
    GEOMETRIAE DEDICATA, 2021, 212 (01) : 415 - 424
  • [30] Real Nullstellensatz for 2-step nilpotent Lie algebras
    Schmitt, Philipp
    Schotz, Matthias
    JOURNAL OF ALGEBRA, 2025, 666 : 850 - 877