Low-Light Image Enhancement Using Volume-Based Subspace Analysis

被引:6
作者
Kim, Wonjun [1 ]
Lee, Ryong [2 ]
Park, Minwoo [2 ]
Lee, Sang-Hwan [2 ]
Choi, Myung-Seok [2 ]
机构
[1] Konkuk Univ, Dept Elect & Elect Engn, Seoul 05029, South Korea
[2] Korea Inst Sci & Technol Informat, Res Data Sharing Ctr, Daejeon 34141, South Korea
关键词
Low-light image enhancement; quality degradation; subspace; volume-based principal energy analysis; illumination component; HISTOGRAM EQUALIZATION; RETINEX;
D O I
10.1109/ACCESS.2020.3005249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under challenging illumination conditions. Even though the significant progress has been made for enhancing the poor visibility, the intrinsic noise amplified in low-light areas still remains as an obstacle for further improvement in visual quality. In this paper, a novel and simple method for low-light image enhancement is proposed. Specifically, the subspace, which has an ability to separately reveal illumination and noise, is constructed from a group of similar image patches, so-called volume, at each pixel position. Based on the principal energy analysis onto this volume-based subspace, the illumination component is accurately inferred from a given image while the unnecessary noise is simultaneously suppressed. This leads to clearly unveiling the underlying structure in low-light areas without loss of details. Experimental results show the efficiency and robustness of the proposed method for low-light image enhancement compared to state-of-the-art methods.
引用
收藏
页码:118370 / 118379
页数:10
相关论文
共 50 条
  • [1] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [2] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [3] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [4] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [5] Low-light image enhancement using inverted image normalized by atmospheric light
    Jeon, Jong Ju
    Eom, I. I. Kyu
    SIGNAL PROCESSING, 2022, 196
  • [6] A comparative analysis of Deep Learning based approaches for Low-light Image Enhancement
    Parihar, Anil Singh
    Singhal, Shivam
    Nanduri, Srishti
    Raghav, Yash
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
  • [7] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [8] Low-light image enhancement based on Transformer and CNN architecture
    Chen, Keyuan
    Chen, Bin
    Wu, Shiqian
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3628 - 3633
  • [9] Low-light image enhancement based on deep learning: a survey
    Wang, Yong
    Xie, Wenjie
    Liu, Hongqi
    OPTICAL ENGINEERING, 2022, 61 (04)
  • [10] Low-Light Image Enhancement Based On Retinex and Saliency Theories
    Hao, Pengcheng
    Wang, Shuang
    Li, Shupei
    Yang, Meng
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2594 - 2597