Synthesis and characterization of a furan-based self-healing polymer

被引:27
作者
Ryu, Yeon Sung [1 ]
Oh, Kyung Wha [2 ]
Kim, Seong Hun [1 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, 17 Haengdang Dong, Seoul 04763, South Korea
[2] Chung Ang Univ, Dept Fash Design, 4726 Seodongdae Ro, Anseong 17546, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
self-healing; furan based polymer; diels-alder reaction; biopolyurethane; enzymatic degradation; POLYESTERS;
D O I
10.1007/s13233-016-4122-5
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The extensive researches of self-healing polymer have been carried out for various applications in industrial fields. In this research, bio-based self-healing polymer was prepared using a cross-linking mechanism between polybutylene furanoate (PBF) and bismaleimide (BM) by Diels-Alder reactions, and it was blended with bio-based polyurethane (BPU) to improve the liquidity, elasticity, and mechanical properties. These self-healing polymer and BPU blended elastomer were made with different ratios of PBF, BM, and BPU. PBF-BM polymer has 6:1, 8:1, and 10:1 of PBF: BM ratios. Each polymer and BPU constitutes self-healing elastomer with 1:1, 1:1.5, and 1:2 ratios. Properties and self-healing ability of these elastomers were investigated by thermal, mechanical, and morphological analysis. On average, 6:1 of PBF: BM ratio shows the outstanding self-healing efficiency and 1:2 of PBF-BM polymer: BPU ratio has the highest mechanical properties with maintain its self-healing ability. Overall results indicated that BPU is a good reinforcement of the furan-based self-healing polymer with improving the self-healing ability and eco-friendly performance.
引用
收藏
页码:874 / 880
页数:7
相关论文
共 34 条
[1]   Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications [J].
Barakat, Nasser A. M. ;
Abadir, M. F. ;
Sheikh, Faheem A. ;
Kanjwal, Muzafar A. ;
Park, Soo Jin ;
Kim, Hak Yong .
CHEMICAL ENGINEERING JOURNAL, 2010, 156 (02) :487-495
[2]   A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions [J].
Burattini, Stefano ;
Colquhoun, Howard M. ;
Fox, Justin D. ;
Friedmann, Donia ;
Greenland, Barnaby W. ;
Harris, Peter J. F. ;
Hayes, Wayne ;
Mackay, Michael E. ;
Rowan, Stuart J. .
CHEMICAL COMMUNICATIONS, 2009, (44) :6717-6719
[3]   Solvent-promoted self-healing epoxy materials [J].
Caruso, Mary M. ;
Delafuente, David A. ;
Ho, Victor ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
MACROMOLECULES, 2007, 40 (25) :8830-8832
[4]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[5]   Polydimethylsiloxane-based self-healing materials [J].
Cho, SH ;
Andersson, HM ;
White, SR ;
Sottos, NR ;
Braun, PV .
ADVANCED MATERIALS, 2006, 18 (08) :997-+
[6]   Effect of castor oil/polycaprolactone hybrid polyols on the properties of biopolyurethane [J].
Choi, Kyung Kyu ;
Park, Sang Ho ;
Oh, Kyung Wha ;
Kim, Seong Hun .
MACROMOLECULAR RESEARCH, 2015, 23 (04) :333-340
[7]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[8]   Multivalent H-bonds for self-healing hydrogels [J].
Cui, Jiaxi ;
del Campo, Aranzazu .
CHEMICAL COMMUNICATIONS, 2012, 48 (74) :9302-9304
[9]   Materials from renewable resources based on furan monomers and furan chemistry: work in progress [J].
Gandini, Alessandro ;
Coelho, Dora ;
Gomes, Monica ;
Reis, Bruno ;
Silvestre, Armando .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (45) :8656-8664
[10]  
Gruter GJM, 2012, COMB CHEM HIGH T SCR, V15, P180