Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery

被引:43
|
作者
Zheng, Ling Shan [1 ]
Yang, You Qiang [1 ]
Guo, Xin Dong [1 ]
Sun, Yao [1 ]
Qian, Yu [1 ]
Zhang, Li Juan [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dissipative particle dynamics; Mesoscale simulation; Drug delivery; pH-sensitive polymer; DISSIPATIVE PARTICLE DYNAMICS; AQUEOUS-SOLUTION; DIBLOCK COPOLYMER; MICROPHASE SEPARATION; TRIBLOCK COPOLYMERS; SENSITIVE MICELLES; ORAL DELIVERY; BLOCK; POLYELECTROLYTE; SURFACTANTS;
D O I
10.1016/j.jcis.2011.07.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computer simulations, dissipative particle dynamics (DPD) and mesoscopic dynamics (MesoDyn), are performed to study the aggregation behavior of pH-sensitive micelles self-assembled from amphiphilic polymer poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly-(ethylene glycol) methyl ether monomethacrylate), P(MMA-co-MAA)-b-PPEGMA. Ibuprofen (IBU) is selected as the model drug. It can be seen from DPD simulations that P(MMA-co-MAA)-b-PPEGMA and IBU form spherical core-shell micelles at certain compositions, and IBU molecules distribute inside the core formed by hydrophobic MMA. The polymer molecules aggregate first, and then IBU diffuses into the aggregate, forming drug-loaded nanoparticles. With different compositions of polymer and IBU, aggregate morphologies in water are observed as sphere, column and lamella. From MesoDyn results, with less hydrophobic MMA beads, the polymer chains are more difficult to form ordered aggregates, and the order parameters get equilibrated in a longer time. The pH value also affects the aggregate process. At pH < 5, the polymer could form traditional core-shell micelles. But at pH > 5, the morphology of micelles is found to be anomalous and loose for releasing drug. MAA aggregates on the surface, instead of the inside. The simulation results are qualitatively consistent with the experimental results. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [31] Lysosome-oriented, dual-stage pH-responsive polymeric micelles for β-lapachone delivery
    Zhou, Yinjian
    Dong, Ying
    Huang, Gang
    Wang, Yiguang
    Huang, Xiaonan
    Zhang, Fayun
    Boothman, David A.
    Gao, Jinming
    Liang, Wei
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (46) : 7429 - 7440
  • [32] Co-Delivery of Paclitaxel and siRNA with pH-Responsive Polymeric Micelles for Synergistic Cancer Therapy
    Shi, Liuqi
    Feng, Huayang
    Li, Zhanrong
    Shi, Jun
    Jin, Lin
    Li, Jingguo
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2021, 17 (02) : 322 - 329
  • [33] Hybrid polymeric micelles based on bioactive polypeptides as pH-responsive delivery systems against melanoma
    Wang, Qi-Ming
    Gao, Zhonggao
    Liu, Shan
    Fan, Bo
    Kang, Lin
    Huang, Wei
    Jin, Mingji
    BIOMATERIALS, 2014, 35 (25) : 7008 - 7021
  • [34] Polymeric Micelles with pH-Responsive Cross-Linked Core Enhance In Vivo mRNA Delivery
    Yang, Wenqian
    Chen, Pengwen
    Boonstra, Eger
    Hong, Taehun
    Cabral, Horacio
    PHARMACEUTICS, 2022, 14 (06)
  • [35] pH-responsive PEG-HPAH micelles for drug delivery and their potential in cancer therapy
    Xu, Qin
    Yu, Jingshuang
    Zhu, Bangshang
    CANCER RESEARCH, 2014, 74 (19)
  • [36] pH-Responsive PDMS-b-PDMAEMA Micelles for Intracellular Anticancer Drug Delivery
    Car, Anja
    Baumann, Patric
    Duskey, Jason T.
    Cham, Mohamed
    Bruns, Nico
    Meier, Wolfgang
    BIOMACROMOLECULES, 2014, 15 (09) : 3235 - 3245
  • [37] Dual pH-responsive micelles as a smart vehicle for drug delivery and overcoming multidrug resistance
    Yin, Mingxing
    Zhang, Dan
    Zhao, Yongdan
    Zhang, Zhiping
    Tan, Songwei
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (02) : 501 - 501
  • [38] Controlled Release and Assembly of Drug Nanoparticles via pH-Responsive Polymeric Micelles: A Theoretical Study
    Xu, Guang-Kui
    Feng, Xi-Qiao
    Li, Bo
    Gao, Huajian
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (20): : 6003 - 6009
  • [39] pH-Responsive Polymer Nanoparticles for Drug Delivery
    Deirram, Nayeleh
    Zhang, Changhe
    Kermaniyan, Sarah S.
    Johnston, Angus P. R.
    Such, Georgina K.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
  • [40] pH-Responsive Drug-Delivery Systems
    Zhu, Ying-Jie
    Chen, Feng
    CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (02) : 284 - 305