Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery

被引:43
|
作者
Zheng, Ling Shan [1 ]
Yang, You Qiang [1 ]
Guo, Xin Dong [1 ]
Sun, Yao [1 ]
Qian, Yu [1 ]
Zhang, Li Juan [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dissipative particle dynamics; Mesoscale simulation; Drug delivery; pH-sensitive polymer; DISSIPATIVE PARTICLE DYNAMICS; AQUEOUS-SOLUTION; DIBLOCK COPOLYMER; MICROPHASE SEPARATION; TRIBLOCK COPOLYMERS; SENSITIVE MICELLES; ORAL DELIVERY; BLOCK; POLYELECTROLYTE; SURFACTANTS;
D O I
10.1016/j.jcis.2011.07.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computer simulations, dissipative particle dynamics (DPD) and mesoscopic dynamics (MesoDyn), are performed to study the aggregation behavior of pH-sensitive micelles self-assembled from amphiphilic polymer poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly-(ethylene glycol) methyl ether monomethacrylate), P(MMA-co-MAA)-b-PPEGMA. Ibuprofen (IBU) is selected as the model drug. It can be seen from DPD simulations that P(MMA-co-MAA)-b-PPEGMA and IBU form spherical core-shell micelles at certain compositions, and IBU molecules distribute inside the core formed by hydrophobic MMA. The polymer molecules aggregate first, and then IBU diffuses into the aggregate, forming drug-loaded nanoparticles. With different compositions of polymer and IBU, aggregate morphologies in water are observed as sphere, column and lamella. From MesoDyn results, with less hydrophobic MMA beads, the polymer chains are more difficult to form ordered aggregates, and the order parameters get equilibrated in a longer time. The pH value also affects the aggregate process. At pH < 5, the polymer could form traditional core-shell micelles. But at pH > 5, the morphology of micelles is found to be anomalous and loose for releasing drug. MAA aggregates on the surface, instead of the inside. The simulation results are qualitatively consistent with the experimental results. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [21] Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery
    Guan, Jiao
    Zhou, Zun-Qiang
    Chen, Mao-Hua
    Li, Hui-Yan
    Tong, Da-Nian
    Yang, Jun
    Yao, Jing
    Zhang, Zheng-Yun
    ACTA BIOMATERIALIA, 2017, 60 : 244 - 255
  • [22] PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery
    Massoumi, Bakhshali
    Abbasian, Mojtaba
    Jahanban-Esfahlan, Rana
    Motamedi, Sanaz
    Samadian, Hadi
    Rezaei, Aram
    Derakhshankhah, Hossein
    Farnudiyan-Habibi, Amir
    Jaymand, Mehdi
    POLYMER INTERNATIONAL, 2020, 69 (05) : 519 - 527
  • [23] pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery
    Kong, Mengle
    Peng, Xinwen
    Cui, Hao
    Liu, Peiwen
    Pang, Bo
    Zhang, Kai
    RSC ADVANCES, 2020, 10 (09) : 4860 - 4868
  • [24] Regulated pH-Responsive Polymeric Micelles for Doxorubicin Delivery to the Nucleus of Liver Cancer Cells
    Li, Hao
    Li, Xian
    Zhang, Chao
    Sun, Qiquan
    Yi, Wei
    Wang, Xuan
    Cheng, Du
    Chen, Shupeng
    Liang, Biling
    Shuai, Xintao
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2016, 12 (06) : 1258 - 1269
  • [25] pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery
    Son, Iloh
    Lee, Yujin
    Baek, Jinsu
    Park, Miran
    Han, Daeho
    Min, Seung Kyu
    Lee, Dongwon
    Kim, Byeong-Su
    BIOMACROMOLECULES, 2021, 22 (05) : 2043 - 2056
  • [26] Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers
    Kim, Ji Hyun
    Li, Yi
    Kim, Min Sang
    Kang, Seong Woo
    Jeong, Ji Hoon
    Lee, Doo Sung
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2012, 427 (02) : 435 - 442
  • [27] pH-Responsive Nanoparticles for Drug Delivery
    Gao, Weiwei
    Chan, Juliana M.
    Farokhzad, Omid C.
    MOLECULAR PHARMACEUTICS, 2010, 7 (06) : 1913 - 1920
  • [28] Bioreducible and pH-responsive shell crosslinked polymeric micelles from a star-shaped terpolymer as drug delivery system
    Motamedi, Sanaz
    Massoumi, Bakhshali
    Jaymand, Mehdi
    Derakhshankhah, Hossein
    Alizadeh, Effat
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2022, 71 (07) : 481 - 492
  • [29] Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery
    Chen, Quan
    Zheng, Jiewei
    Yuan, Xiaozhe
    Wang, Jufang
    Zhang, Lijuan
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 82 : 1 - 9
  • [30] pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery
    Kang, Yang
    Ha, Wei
    Liu, Ying-Qian
    Ma, Yuan
    Fan, Min-Min
    Ding, Li-Sheng
    Zhang, Sheng
    Li, Bang-Jing
    NANOTECHNOLOGY, 2014, 25 (33)