A critical review on advances in TiO2-based photocatalytic systems for CO2 reduction

被引:32
|
作者
Belinda Dominguez-Espindola, Ruth [1 ]
Maria Arias, Dulce [1 ]
Rodriguez-Gonzalez, Claramaria [2 ]
Sebastian, P. J. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Morelos, Mexico
[2] Parque Tecnol Queretaro, Ctr Invest & Desarrollo Tecnol Electroquim, Pedro Escobedo 76703, Queretaro, Mexico
关键词
Carbon capture; photocatalyticCO(2) reduction; Thermal process; Solar fuels; TiO2; OPTICAL-FIBER PHOTOREACTOR; CO2; REDUCTION; CARBON-DIOXIDE; HIGH-PRESSURE; ANATASE TIO2; CATALYTIC-REDUCTION; MONOLITH REACTOR; DOPED TIO2; PERFORMANCE ANALYSIS; TITANIUM-DIOXIDE;
D O I
10.1016/j.applthermaleng.2022.119009
中图分类号
O414.1 [热力学];
学科分类号
摘要
The growing world population and uncontrolled industrial growth have resulted in elevated energy consumption and harsh emission of toxic agents tearing down the ecosystem. The transformation of a greenhouse gas like CO2 into energy sources, i.e., CO, CH3OH, CH4, etc. is a promising strategy to alleviate the interlinked issues of environmental pollution, global warming and climate change. This article presents an overview of the fundamentals of photocatalytic systems and the latest developments in CO2 chemical reduction towards solar fuels over titanium dioxide (TiO2). The basic principle of photocatalysis states new photocatalyst synthesis and how the current materials can be used to improve the existing catalysts, focusing on the surface area, electrical conductivity, and chemical stability of TiO2. In the study of the state of the art it was observed that at a lower CH4/CO2 ratio, more H2 was produced, while a higher feed ratio promoted CO production. The maximum production rate reported for CH4 was 0.64 mmol g(-1)h(-1), for CO was 158 mmol/h/g(cat), and 102 mmol h(-1)Kg(cat )(_1) . Detailed insights for enhanced performance, especially factors affecting mass transfer, thermodynamics, selectivity, and reaction mechanism are provided and discussed. This review summarizes and analyzes research work on the photoreduction of CO(2 )in the presence of TiO2 over the past ten years. State of the art in photocatalytic CO2 chemical reduction over TiO2 emphasizes material design and reactor configurations. One section is dedicated to reactor design optimization and studying the synergic effect in photocatalysis. Also, brief perspectives and the main challenges in photocatalytic CO2 reduction are outlined, which are vital for improving the con-version efficiency of CO2. The use of solar energy to drive CO2 photocatalytic reactions and the recent progress in this area are also explored and discussed.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A Critical Review on Black Phosphorus-Based Photocatalytic CO2 Reduction Application
    Zhao, Guo-Qing
    Hu, Jun
    Long, Xuan
    Zou, Jiao
    Yu, Jin-Gang
    Jiao, Fei-Peng
    SMALL, 2021, 17 (49)
  • [32] Photocatalytic Reduction of CO2 on TiO2 Catalysts
    Wang Huixiang
    Jiang Dong
    Wu Dong
    Li Debao
    Sun Yuhan
    PROGRESS IN CHEMISTRY, 2012, 24 (11) : 2116 - 2123
  • [33] Photocatalytic Reduction of CO2 by TiO2 Nanotubes
    Chang, H-H
    Wei, L-W
    Huang, H-L
    Chang, H-Y
    Wang, H. Paul
    NANO, 2022, 17 (04)
  • [34] A review on TiO2-based composites for superior photocatalytic activity
    Al Zoubi, Wail
    Al-Hamdani, Abbas Ali Salih
    Sunghun, Baek
    Ko, Young Gun
    REVIEWS IN INORGANIC CHEMISTRY, 2021, 41 (04) : 213 - 222
  • [35] Photocatalytic CO2 Reduction on TiO2-Based Materials under Controlled Reaction Conditions: Systematic Insights from a Literature Study
    Moustakas, Nikolaos G.
    Strunk, Jennifer
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (49) : 12739 - 12746
  • [36] Photocatalytic Reduction of CO2 with N-Doped TiO2-Based Photocatalysts Obtained in One-Pot Supercritical Synthesis
    Andrade, Oscar R.
    Rodriguez, Veronica
    Camarillo, Rafael
    Martinez, Fabiola
    Jimenez, Carlos
    Rincon, Jesusa
    NANOMATERIALS, 2022, 12 (11)
  • [37] Advances in molecular photocatalytic and electrocatalytic CO2 reduction
    Windle, Christopher D.
    Perutz, Robin N.
    COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) : 2562 - 2570
  • [38] Photocatalytic CO2 reduction with a TiO2-supported copper photosensitizer and an iron-based CO2 reduction catalyst
    Huerta-Zeron, H. D.
    Rockstroh, N.
    Lang, M.
    Surkus, A. -E.
    Brueser, V.
    Lochbrunner, S.
    Junge, H.
    Beller, M.
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (13) : 3940 - 3945
  • [39] Photocatalysts for Photocatalytic CO2 Reduction: A Review
    Lizhong, Zhang
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (01) : 149 - 160
  • [40] Photocatalysts for Photocatalytic CO2 Reduction:A Review
    Zhang Lizhong
    ChinaPetroleumProcessing&PetrochemicalTechnology, 2022, 24 (01) : 149 - 160