ABCB- and ABCC-type transporters confer multixenobiotic resistance and form an environment-tissue barrier in bivalve gills

被引:107
作者
Luckenbach, Till [1 ]
Epel, David [2 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Helmholtz Ctr Environm Res, Dept Cell Toxicol, D-04318 Leipzig, Germany
[2] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA
关键词
ATP-binding cassette transporters; multixenobiotic resistance;
D O I
10.1152/ajpregu.00563.2007
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Aquatic organisms and, in particular, filter feeders, such as mussels, are continuously exposed to toxicants dissolved in the water and, presumably, require adaptations to avoid the detrimental effects from such chemicals. Previous work indicates that activity of ATP-binding cassette (ABC) transporters protects mussels against toxicants, but the nature of these transporters and the structural basis of protection are not known. Here we meld studies on transporter function, gene expression, and localization of transporter protein in mussel gill tissue and show activity and expression of two xenobiotic transporter types in the gills, where they provide an effective structural barrier against chemicals. Activity of ABCB/MDR/P-glycoprotein and ABCC/MRP-type transporters was indicated by sensitivity of efflux of the test substrate calcein-AM to the ABCB inhibitor PSC-833 and the ABCC inhibitor MK-571. This activity profile is supported by our cloning of the complete sequence of two ABC transporter types from RNA in mussel tissue with a high degree of identity to transporters from the ABCB and ABCC subfamilies. Overall identity of the amino acid sequences with corresponding homologs from other organisms was 38-50% (ABCB) and 27-44% (ABCC). C219 antibody staining specific for ABCB revealed that this transporter was restricted to cells in the gill filaments with direct exposure to water flow. Taken together, our data demonstrate that ABC transporters form an active, physiological barrier at the tissue-environment interface in mussel gills, providing protection against environmental xenotoxicants.
引用
收藏
页码:R1919 / R1929
页数:11
相关论文
共 52 条
[1]   The power of the pump: Mechanisms of action of P-glycoprotein (ABCB1) [J].
Ambudkar, SV ;
Kim, IW ;
Sauna, ZE .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 27 (05) :392-400
[2]   RESTORATION OF DAUNOMYCIN RETENTION IN MULTIDRUG-RESISTANT P388 CELLS BY SUBMICROMOLAR CONCENTRATIONS OF SDZ PSC-833, A NONIMMUNOSUPPRESSIVE CYCLOSPORINE DERIVATIVE [J].
BOESCH, D ;
MULLER, K ;
POURTIERMANZANEDO, A ;
LOOR, F .
EXPERIMENTAL CELL RESEARCH, 1991, 196 (01) :26-32
[3]   INTERNAL DUPLICATION AND HOMOLOGY WITH BACTERIAL TRANSPORT PROTEINS IN THE MDR1 (P-GLYCOPROTEIN) GENE FROM MULTIDRUG-RESISTANT HUMAN-CELLS [J].
CHEN, CJ ;
CHIN, JE ;
UEDA, K ;
CLARK, DP ;
PASTAN, I ;
GOTTESMAN, MM ;
RONINSON, IB .
CELL, 1986, 47 (03) :381-389
[4]  
Cole SPC, 1998, BIOESSAYS, V20, P931, DOI 10.1002/(SICI)1521-1878(199811)20:11<931::AID-BIES8>3.0.CO
[5]  
2-J
[6]   EXPRESSION OF THE MULTIDRUG RESISTANCE GENE-PRODUCT (P-GLYCOPROTEIN) IN HUMAN NORMAL AND TUMOR-TISSUES [J].
CORDONCARDO, C ;
OBRIEN, JP ;
BOCCIA, J ;
CASALS, D ;
BERTINO, JR ;
MELAMED, MR .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1990, 38 (09) :1277-1287
[7]   CHARACTERIZATION OF MULTIXENOBIOTIC MULTIDRUG TRANSPORT IN THE GILLS OF THE MUSSEL MYTILUS-CALIFORNIANUS AND IDENTIFICATION OF ENVIRONMENTAL SUBSTRATES [J].
CORNWALL, R ;
TOOMEY, BH ;
BARD, S ;
BACON, C ;
JARMAN, WM ;
EPEL, D .
AQUATIC TOXICOLOGY, 1995, 31 (04) :277-296
[8]   Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins [J].
Deeley, Roger G. ;
Westlake, Christopher ;
Cole, Susan P. C. .
PHYSIOLOGICAL REVIEWS, 2006, 86 (03) :849-899
[9]   Use of multidrug transporters as first lines of defense against toxins in aquatic organisms [J].
Epel, D .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR AND INTEGRATIVE PHYSIOLOGY, 1998, 120 (01) :23-28
[10]   Kinetic analysis of calcein and calcein -: Acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein [J].
Essodaïgui, M ;
Broxterman, HJ ;
Garnier-Suillerot, A .
BIOCHEMISTRY, 1998, 37 (08) :2243-2250