Development of hermetic glass frit encapsulation for perovskite solar cells

被引:31
作者
Emami, Seyedali [1 ]
Martins, Jorge [1 ]
Madureira, Ruben [1 ]
Hernandez, Daniel [1 ]
Bernardo, Gabriel [1 ]
Mendes, Joaquim [2 ]
Mendes, Adelio [1 ]
机构
[1] Univ Porto, Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal
[2] Univ Porto, INEGI Inst Sci & Innovat Mech & Ind Engn, Fac Engn, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal
基金
欧洲研究理事会;
关键词
encapsulation; laser processing; perovskite solar cell; hermetic; sealing; HIGH-PERFORMANCE; THERMAL-PROPERTIES; EFFICIENCY; TEMPERATURE; STABILITY; DEGRADATION; DEPOSITION; INTERFACE; LAYER; OXIDE;
D O I
10.1088/1361-6463/aaf1f4
中图分类号
O59 [应用物理学];
学科分类号
摘要
A hermetic laser-assisted glass frit encapsulation, at a process temperature of 120 degrees C, was developed for perovskite solar cell application. The hermeticity and long-term stability of the sealing was examined based on standard tests for photovoltaic (PV) applications. Encapsulations using fluorine doped tin oxide (FTO)-coated glass substrates displayed 8.93 x 10(-8) atm center dot cm(3) center dot s(-1) air leak rate after five cycles of a humidity-freeze test according to the IEC61646 standard; a rate lower than the reject limit of the MIL-STD-883 standard test for fine leaks. Devices sealed with a TiO2 blocking layer and FTO scribing-denoted as an empty perovskite solar cell-showed that the encapsulation is compatible with the various thermal coefficient of expansion regions of perovskite solar cells (PSCs). The applicability of the MIL-STD-883 standard was studied in detail and it was concluded that a new method is required to measure the fine helium leak rate of devices with cavity sizes larger than 5.5 x 5.5 cm(2). The developed sealing process is scalable for larger devices; therefore, it guarantees a new step forward for the industrialization of PSCs.
引用
收藏
页数:19
相关论文
共 74 条
  • [1] Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells
    Aharon, Sigalit
    Dymshits, Alexander
    Rotem, Amit
    Etgar, Lioz
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) : 9171 - 9178
  • [2] Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide
    Ahn, Namyoung
    Son, Dae-Yong
    Jang, In-Hyuk
    Kang, Seong Min
    Choi, Mansoo
    Park, Nam-Gyu
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) : 8696 - 8699
  • [3] [Anonymous], 2017, RENEWABLE POWER GENE
  • [4] [Anonymous], 2010, MILSTD883H
  • [5] [Anonymous], 2008, IEC61646
  • [6] The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers
    Aristidou, Nicholas
    Sanchez-Molina, Irene
    Chotchuangchutchaval, Thana
    Brown, Michael
    Martinez, Luis
    Rath, Thomas
    Haque, Saif A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (28) : 8208 - 8212
  • [7] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [8] Low-temperature processed meso-superstructured to thin-film perovskite solar cells
    Ball, James M.
    Lee, Michael M.
    Hey, Andrew
    Snaith, Henry J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1739 - 1743
  • [9] Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers
    Bella, Federico
    Griffini, Gianmarco
    Correa-Baena, Juan-Pablo
    Saracco, Guido
    Gratzel, Michael
    Hagfeldt, Anders
    Turri, Stefano
    Gerbaldi, Claudio
    [J]. SCIENCE, 2016, 354 (6309) : 203 - 206
  • [10] Organometal halide perovskite solar cells: degradation and stability
    Berhe, Taame Abraha
    Su, Wei-Nien
    Chen, Ching-Hsiang
    Pan, Chun-Jern
    Cheng, Ju-Hsiang
    Chen, Hung-Ming
    Tsai, Meng-Che
    Chen, Liang-Yih
    Dubale, Amare Aregahegn
    Hwang, Bing-Joe
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) : 323 - 356