Minimal norm structured perturbations (backward errors) are constructed such that an approximate eigenpair of a nonlinear eigenvalue problem is an exact eigenpair of an appropriately perturbed problem. Structured and unstructured backward errors are compared. These results extend previous results for (structured) matrix polynomials to more general functions.
机构:
Univ Paris Est, CERMICS, Project Team Micmac, INRIA Ecole Ponts, F-77455 Marne La Vallee 2, FranceUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France
Cances, Eric
Chakir, Rachida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UMR LJLL 7598, F-75005 Paris, FranceUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France
Chakir, Rachida
Maday, Yvon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UMR LJLL 7598, F-75005 Paris, France
Brown Univ, Div Appl Math, Providence, RI 02912 USAUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France
机构:
Univ Paris Est, CERMICS, Project Team Micmac, INRIA Ecole Ponts, F-77455 Marne La Vallee 2, FranceUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France
Cances, Eric
Chakir, Rachida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UMR LJLL 7598, F-75005 Paris, FranceUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France
Chakir, Rachida
Maday, Yvon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UMR LJLL 7598, F-75005 Paris, France
Brown Univ, Div Appl Math, Providence, RI 02912 USAUniv Paris 06, UMR LJLL 7598, F-75005 Paris, France