Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination

被引:4
|
作者
Zhang, Chan [1 ]
Li, Jing [2 ]
Huang, Jian [2 ]
Wu, Shangjie [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Resp Med, Changsha 410006, Hunan, Peoples R China
[2] Hunan Normal Univ, Changsha Hosp, Changsha Hosp 4, Dept Imaging, Changsha 410006, Hunan, Peoples R China
关键词
CANCER; MRI;
D O I
10.1155/2021/3417285
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The objective of this study was to perform segmentation and extraction of CT images of pulmonary nodules based on convolutional neural networks (CNNs). The Mask-RCNN algorithm model is a typical end-to-end image segmentation model, which uses the R-FCN structure for nodule detection. The effect of applying the two algorithm models to the computed tomography (CT) diagnosis of pulmonary nodules was analyzed, and different indexes of pulmonary nodule CT images in lung function examination after algorithm optimization were compared. A total of 56 patients diagnosed with pulmonary nodules by surgery or puncture were taken as the research objects. Based on the Mask-RCNN algorithm, a model for CT image segmentation processing of pulmonary nodules was proposed. Subsequently, the 3D Faster-RCNN model was used to label the nodules in the pulmonary nodules. The experimental results showed that the trained Mask-RCNN algorithm model can effectively complete the segmentation task of lung CT images, but there was a little jitter at the boundary. The speed of R-FCN algorithm for nodular detection was 0.172 seconds/picture, and the accuracy was 88.9%. CT scans were performed on the 56 patients based on a deep learning algorithm. The results showed that 30 cases of malignant pulmonary nodules were confirmed, and the diagnostic accuracy was 93.75%. There were 22 benign lesions, the diagnostic accuracy was 91.67%, and the overall diagnostic accuracy was 92.85%. This study effectively improved the diagnostic efficiency of CT images of pulmonary nodules, and the accuracy of CT images in the diagnosis of pulmonary nodules was analyzed and evaluated. It provided theoretical support for the follow-up diagnosis of pulmonary nodules and the treatment of lung cancer. It also significantly improved the diagnostic effect and detection efficiency of pulmonary nodules.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Automatic pulmonary nodule detection on computed tomography images using novel deep learning
    Ghasemi, Shabnam
    Akbarpour, Shahin
    Farzan, Ali
    Jamali, Mohammad Ali Jabraeil
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55147 - 55173
  • [12] Automatic pulmonary nodule detection on computed tomography images using novel deep learning
    Shabnam Ghasemi
    Shahin Akbarpour
    Ali Farzan
    Mohammad Ali Jabraeil Jamali
    Multimedia Tools and Applications, 2024, 83 : 55147 - 55173
  • [13] Deep Learning-Based Cancerous Lung Nodule Detection in Computed Tomography Imageries
    Kumar, Sangaraju V.
    Chen, Fei
    Kim, Sumi
    Choi, Jaeho
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 : 44 - 52
  • [14] Pulmonary lung nodule detection and classification through image enhancement and deep learning
    Bhaskar, Nuthanakanti
    Ganashree, Tumkur Sureshkumar
    Patra, Raj Kumar
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2023, 15 (3-4) : 291 - 313
  • [15] Pulmonary nodule detection method based on convolutional neural network
    Liu, Yiming
    Hou, Zhichao
    Li, Xiaoqin
    Wang, Xuedong
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2019, 36 (06): : 969 - 977
  • [16] Lung cancer detection based on computed tomography image using convolutional neural networks
    Ozcelik, Neslihan
    Kivrak, Mehmet
    Kotan, Abdurrahman
    Selimoglu, Inci
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (03) : 1795 - 1805
  • [17] Lung Nodule Detection and Classification by Using Convolutional Neural Network
    Tekade, Ruchita
    Rajeswari, K.
    HELIX, 2018, 8 (05): : 3696 - 3700
  • [18] Development of a Convolutional Neural Network for detection of Lung Cancer based on Computed Tomography Images
    Narvaez, Gabriela
    Tirado-Espin, Andres
    Cadena-Morejon, Carolina
    Villalba-Meneses, Fernando
    Cruz-Varela, Jonathan
    Villavicencio Gordon, Gabriela
    Guevara, Cesar
    Alvarado-Cando, Omar
    Almeida-Galarraga, Diego
    2023 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND SOFTWARE TECHNOLOGIES, ICI2ST 2023, 2023, : 24 - 31
  • [19] Lung Nodule Diagnosis on 3D Computed Tomography Images Using Deep Convolutional Neural Networks
    Zhang, Qianqian
    Wang, Haifeng
    Yoon, Sang Won
    Won, Daehan
    Srihari, Krishnaswami
    25TH INTERNATIONAL CONFERENCE ON PRODUCTION RESEARCH MANUFACTURING INNOVATION: CYBER PHYSICAL MANUFACTURING, 2019, 39 : 363 - 370
  • [20] Lung nodule detection using Eyrie Flock-based Deep Convolutional Neural Network
    Gedam, Ajit Narendra
    Ajalkar, Deepika A.
    Rumale, Aniruddha S.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2024, 18 (03): : 1651 - 1673