Long-Term and Multi-Step Ahead Call Traffic Forecasting with Temporal Features Mining

被引:2
|
作者
Cao, Bin [1 ]
Wu, Jiawei [1 ]
Cao, Longchun [1 ]
Xu, Yueshen [2 ]
Fan, Jing [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou, Peoples R China
[2] Xidian Univ, Sch Comp Sci & Technol, Xian, Peoples R China
关键词
Call traffic; Long-term forecasting; Multi-step ahead; Temporal features mining; NEURAL-NETWORK; PREDICTION; CENTERS;
D O I
10.1007/s11036-019-01447-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An accurate call traffic forecasting can help the call center to schedule and manage its employees more scientifically. Meanwhile, to meet the needs that some tasks in the call center require the prediction of call traffic in different time buckets for a future long term, it is necessary to forecast the call traffic in a long-term and multi-step way. However, existing forecasting methods cannot solve this problem as (1) Most existing methods merely focus on short-term forecasting for the next hour or the next day. (2) The temporal features of call traffic are ignored, which leads to a lower accuracy in long-term forecasting. Hence, in this paper, we propose a holistic solution for forecasting long-term multi-step ahead call traffic. In our method, we give a categorized way for temporal features by studying the call traffic data. After data preprocessing, we develop an extraction method for temporal features extraction for training the forecasting model. We propose two forecasting strategies based on taking different types of features as input. Experimental results on the real-world call traffic dataset show the effectiveness of our solution, including data preprocessing, temporal features mining, and the forecasting model.
引用
收藏
页码:701 / 712
页数:12
相关论文
共 50 条
  • [21] Adaptive Regularized ELM and Improved VMD method for Multi-step ahead Electricity Price Forecasting Grid
    Deepa, S. N.
    Gobu, B.
    Jaikumar, S.
    Arulmozhi, N.
    Kanimozhi, P.
    Victoire, Aruldoss Albert T.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1255 - 1260
  • [22] Multi-step ahead time-series wind speed forecasting for smart-grid application
    Malik, Hasmat
    Khurshaid, Tahir
    Almutairi, Abdulaziz
    Alotaibi, Majed A.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 633 - 646
  • [23] Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting
    Badrzadeh, Honey
    Sarukkalige, Ranjan
    Jayawardena, A. W.
    JOURNAL OF HYDROLOGY, 2013, 507 : 75 - 85
  • [24] Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
    Szabadvary, Johan Hallberg
    13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, 2024, 230 : 250 - 263
  • [25] An advanced wind speed multi-step ahead forecasting approach with characteristic component analysis
    Zhang, Guoyong
    Wu, Yonggang
    Liu, Yuqi
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2014, 6 (05)
  • [26] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Papacharalampous, Georgia
    Tyralis, Hristos
    Koutsoyiannis, Demetris
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (02) : 481 - 514
  • [27] A novel multi-step ahead forecasting model for flood based on time residual LSTM
    Zou, Yongsong
    Wang, Jin
    Lei, Peng
    Li, Yi
    JOURNAL OF HYDROLOGY, 2023, 620
  • [28] Random forest machine learning algorithm based seasonal multi-step ahead short-term solar photovoltaic power output forecasting
    Jogunuri, Sravankumar
    Josh, F. T.
    Stonier, Albert Alexander
    Peter, Geno
    Jayaraj, Jayakumar
    Jaganathan, S.
    Joseph, Jency J.
    Ganji, Vivekananda
    IET RENEWABLE POWER GENERATION, 2024,
  • [29] A multi-energy meta-model strategy for multi-step ahead energy load forecasting
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Koukaras, Paraskevas
    Katsaros, Nikolaos
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    ELECTRICAL ENGINEERING, 2025,
  • [30] Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods
    Dal Molin Ribeiro, Matheus Henrique
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 111