Prediction of the Transition-Temperature Shift Using Machine Learning Algorithms and the Plotter Database

被引:10
|
作者
Ferreno, Diego [1 ]
Serrano, Marta [2 ]
Kirk, Mark [3 ]
Sainz-Aja, Jose A. [1 ]
机构
[1] Univ Cantabria, Lab Sci & Engn Mat Div LADICIM, ETS Ingn Caminos Canales & Puertos, Av Castros 44, Santander 39005, Spain
[2] CIEMAT, Div Energy Interest Mat, Avda Complutense 40, Madrid 28040, Spain
[3] Cent Res Inst Elect Power Ind, Yokosuka, Kanagawa 400196, Japan
关键词
machine learning; neutron embrittlement; gradient boosting; EMBRITTLEMENT TREND CURVE;
D O I
10.3390/met12020186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The long-term operating strategy of nuclear plants must ensure the integrity of the vessel, which is subjected to neutron irradiation, causing its embrittlement over time. Embrittlement trend curves used to predict the dependence of the Charpy transition-temperature shift, Delta T-41J, with neutron fluence, such as the one adopted in ASTM E900-15, are empirical or semi-empirical formulas based on parameters that characterize irradiation conditions (neutron fluence, flux and temperature), the chemical composition of the steel (copper, nickel, phosphorus and manganese), and the product type (plates, forgings, welds, or so-called standard reference materials (SRMs)). The ASTM (American Society for Testing and Materials) E900-15 trend curve was obtained as a combination of physical and phenomenological models with free parameters fitted using the available surveillance data from nuclear power plants. These data, collected to support ASTM's E900 effort, open the way to an alternative, purely data-driven approach using machine learning algorithms. In this study, the ASTM PLOTTER database that was used to inform the ASTM E900-15 fit has been employed to train and validate a number of machine learning regression models (multilinear, k-nearest neighbors, decision trees, support vector machines, random forest, AdaBoost, gradient boosting, XGB, and multi-layer perceptron). Optimal results were obtained with gradient boosting, which provided a value of R-2 = 0.91 and a root mean squared error approximate to 10.5 degrees C for the test dataset. These results outperform the prediction ability of existing trend curves, including ASTM E900-15, reducing the prediction uncertainty by approximate to 20%. In addition, impurity-based and permutation-based feature importance algorithms were used to identify the variables that most influence Delta T-41J (copper, fluence, nickel and temperature, in this order), and individual conditional expectation and interaction plots were used to estimate the specific influence of each of the features.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Heart Attack Prediction using Machine Learning Algorithms
    Laxamana, Romeo Jousef A.
    Vale, Joan Marie
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1428 - 1436
  • [22] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [23] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [24] Diabetes Disease Prediction Using Machine Learning Algorithms
    Lyngdoh, Arwatki Chen
    Choudhury, Nurul Amin
    Moulik, Soumen
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 517 - 521
  • [25] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [26] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182
  • [28] Heart Disease Prediction Using Machine Learning Algorithms
    Mammen, Rea
    Pawar, Arti
    SMART SENSORS MEASUREMENT AND INSTRUMENTATION, CISCON 2021, 2023, 957 : 239 - 253
  • [29] Freight Cost Prediction Using Machine Learning Algorithms
    Kulkarni, Pranav
    Gala, Ishan
    Nargundkar, Aniket
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 507 - 515
  • [30] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182