On Optimal Binary One-Error-Correcting Codes of Lengths 2m-4 and 2m-3

被引:8
作者
Krotov, Denis S. [1 ,3 ]
Ostergard, Patric R. J. [2 ,4 ]
Pottonen, Olli [5 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Aalto Univ, Dept Commun & Networking, Sch Elect Engn, Aalto 00076, Finland
[3] Novosibirsk State Univ, Dept Mech & Math, Novosibirsk 630090, Russia
[4] Univ Bayreuth, Lehrstuhl Math 2, D-95440 Bayreuth, Germany
[5] Aalto Univ, Sch Sci, Dept Informat & Comp Sci, Aalto 00076, Finland
基金
芬兰科学院; 俄罗斯基础研究基金会;
关键词
Automorphism group; classification; clique; error-correcting code; MacWilliams transform;
D O I
10.1109/TIT.2011.2147758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Best and Brouwer [2] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2(m) - 4 and 2(m) - 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237 610 and 117 823 such codes, respectively (with 27 375 and 17 513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m >= 4, there are optimal binary one-error-correcting codes of length 2(m) - 4 and 2(m) - 3 and that cannot be lengthened to perfect codes of length 2(m) - 1.
引用
收藏
页码:6771 / 6779
页数:9
相关论文
共 23 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]  
[Anonymous], PHILIPS RES REP S
[3]  
[Anonymous], 1990, Report TR-CS-90-02
[4]  
[Anonymous], 2003, T48 HELS U TECHN
[5]  
BAICHEVA T, 1998, P 2 INT WORKSH OPT C, P5
[6]   TRIPLY SHORTENED BINARY HAMMING CODE IS OPTIMAL [J].
BEST, MR ;
BROUWER, AE .
DISCRETE MATHEMATICS, 1977, 17 (03) :235-245
[7]   Every binary (2m-2, 22(m)-2-m, 3) code can be lengthened to form a perfect code of length 2m-1 [J].
Blackmore, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :698-700
[8]   On perfect codes and tilings: Problems and solutions [J].
Etzion, T ;
Vardy, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (02) :205-223
[9]  
Kaski P., 2006, Classification Algorithms for Codes and Designs
[10]   On the binary codes with parameters of doubly-shortened 1-perfect codes [J].
Krotov, Denis S. .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (02) :181-194