On an eigenvalue problem involving the one-dimensional p-Laplacian

被引:3
作者
Huy, NB
Thanh, TD
机构
[1] Pedag Univ, Dept Math, Ho Chi Minh City, Vietnam
[2] Coll Med & Pharm, Ho Chi Minh City, Vietnam
关键词
D O I
10.1016/j.jmaa.2003.09.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply general results on operator equations in ordered spaces and properties of the principal eigenvalues for weighted semi-linear equations to prove the existence of a global continua of positive solutions and eigenvalue intervals to the problem (phi(x'))'+lambdaf (t, x, x')=0 in (0, 1), x(0)=x(1)=0, where phi (x)=\x\(p-2)x, p>1, lambda>0. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 8 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]  
FLECKINGER J, 1995, CR ACAD SCI I-MATH, V321, P731
[3]  
GACIAHUIDOBRO M, 1996, J MATH ANAL APPL, V202, P1
[4]   Maximum and comparison principles for operators involving the p-Laplacian [J].
Garcia-Melian, J ;
de Lis, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) :49-65
[5]  
Huy N. B., 2002, DEMONSTRATIO MATH, V35, P303, DOI 10.1515/dema-2002-0211
[6]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
[7]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations