A Tauberian theorem for laplace transforms with pseudofunction boundary Behavior

被引:0
作者
Korevaar, J [1 ]
机构
[1] Univ Amsterdam, Dept Math, NL-1018 TV Amsterdam, Netherlands
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS II | 2005年 / 382卷
关键词
distributions; Fourier transform; Laplace transform; prime number theorem; pseudofunct ions; Tauberian theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The prime number theorem provided the chief impulse for complex Tauberian theory, in which the boundary behavior of a transform in the complex plane plays a crucial role. We consider Laplace transforms of bounded functions. Our Tauberian theorem does not allow first-order poles on the imaginary axis; but any milder singularities, characterized by pseudofunction boundary behavior, are permissible. In this context, we obtain a useful Tauberian theorem by exploiting Newman's 'contour method'.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [41] A NOTE ON THE COMPARISON BETWEEN LAPLACE AND SUMUDU TRANSFORMS
    Kilicman, A.
    Eltayeb, H.
    Atan, K. A. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (01) : 131 - 141
  • [42] EVALUATING IMPROPER INTEGRALS USING LAPLACE TRANSFORMS
    Gordon, Russell A.
    Stewart, Sean M.
    REAL ANALYSIS EXCHANGE, 2023, 48 (01) : 201 - 222
  • [43] Numerical inversion for laplace transforms of functions with discontinuities
    Sakurai, T
    ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) : 616 - 642
  • [44] Convergence of Unilateral Laplace Transforms on Time Scales
    Davis, John M.
    Gravagne, Ian A.
    Marks, Robert J., II
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2010, 29 (05) : 971 - 997
  • [45] An ergodic approach to Laplace transforms on time scales
    Jackson, B. J.
    Davis, J. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [46] Some theorems on integrability of Laplace transforms and their applications
    Biryukov, L.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (07) : 459 - 469
  • [47] Inverse Laplace transforms of luminescence relaxation functions
    Berberan-Santos, Mario N.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 70 - 73
  • [48] Asymptotic expansions for Laplace transforms of Markov processes
    Yang, Xiangfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 694 - 721
  • [49] Entropy and density approximation from Laplace transforms
    Gzyl, Henryk
    Inverardi, Pierluigi Novi
    Tagliani, Aldo
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 225 - 236
  • [50] Convergence of Unilateral Laplace Transforms on Time Scales
    John M. Davis
    Ian A. Gravagne
    Robert J. Marks
    Circuits, Systems and Signal Processing, 2010, 29 : 971 - 997