Antireflection effect of femtosecond laser-induced periodic surface structures on silicon

被引:118
|
作者
Vorobyev, A. Y. [1 ]
Guo, Chunlei [1 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
OPTICS EXPRESS | 2011年 / 19卷 / 19期
基金
美国国家科学基金会;
关键词
POLARIZED SPECTRAL EMITTANCE; LAMELLAR GRATINGS; MICROMACHINED SURFACES; NORMAL DIRECTION; DOPED SILICON; UNDOPED SILICON; BROAD-BAND; NANOSTRUCTURES; ABSORPTION; PULSES;
D O I
10.1364/OE.19.0A1031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Following direct femtosecond laser pulse irradiation, we produce a unique grating structure over a large area superimposed by finer nanostructures on a silicon wafer. We study, for the first time, the antireflection effect of this femtosecond laser-induced periodic surface structures (FLIPSSs) in the wavelength range of 250 - 2500 nm. Our study shows that the FLIPSSs suppress both the total hemispherical and specular polarized reflectance of silicon surface significantly over the entire studied wavelength range. The total polarized reflectance of the processed surface is reduced by a factor of about 3.5 in the visible and 7 in the UV compared to an untreated sample. The antireflection effect of the FLIPSS surface is broadband and the suppression stays to the longest wavelength (2500 nm) studied here although the antireflection effect in the infrared is weaker than in the visible. Our FLIPSS structures are free of chemical contamination, highly durable, and easily controllable in size. (C) 2011 Optical Society of America
引用
收藏
页码:A1031 / A1036
页数:6
相关论文
共 50 条
  • [1] Femtosecond laser-induced periodic surface structures
    Bonse, J.
    Krueger, J.
    Hoehm, S.
    Rosenfeld, A.
    JOURNAL OF LASER APPLICATIONS, 2012, 24 (04)
  • [2] Optical Properties of Femtosecond Laser-Induced Periodic Surface Structures on Metals
    Vorobyev, Anatoliy Y.
    Makin, Vladimir S.
    Guo, Chunlei
    2009 52ND IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2009, : 909 - +
  • [3] Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film
    Wang, Shaojun
    Jiang, Lan
    Han, Weina
    Hu, Jie
    Li, Xiaowei
    Wang, Qingsong
    Lu, Yongfeng
    APPLIED PHYSICS EXPRESS, 2018, 11 (05)
  • [4] Femtosecond laser-induced periodic surface structures on silica
    Hoehm, S.
    Rosenfeld, A.
    Krueger, J.
    Bonse, J.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
  • [5] Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal
    Gu, Hongan
    Dai, Ye
    Wang, Haodong
    Yan, Xiaona
    Ma, Guohong
    APPLIED SURFACE SCIENCE, 2017, 425 : 307 - 313
  • [6] Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots
    Talbi, Abderazek
    Kaya-Boussougou, Sostaine
    Sauldubois, Audrey
    Stolz, Arnaud
    Boulmer-Leborgne, Chantal
    Semmar, Nadjib
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (07):
  • [7] Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO
    Dufft, D.
    Rosenfeld, A.
    Das, S. K.
    Grunwald, R.
    Bonse, J.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (03)
  • [8] Formation of organic layer on femtosecond laser-induced periodic surface structures
    Yasumaru, Naoki
    Sentoku, Eisuke
    Kiuchi, Junsuke
    APPLIED SURFACE SCIENCE, 2017, 405 : 267 - 272
  • [9] Laser-induced periodic surface structures formed on the sidewalls of microholes trepanned by a femtosecond laser
    Khai Xuan Pham
    Tanabe, Rie
    Ito, Yoshiro
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 112 (02): : 485 - 493
  • [10] Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica
    Hoehm, S.
    Rosenfeld, A.
    Krueger, J.
    Bonse, J.
    APPLIED PHYSICS LETTERS, 2013, 102 (05)