Membrane-Interactive Compounds From Pistacia lentiscus L. Thwart Pseudomonas aeruginosa Virulence

被引:29
|
作者
Tahrioui, Ali [1 ]
Ortiz, Sergio [2 ]
Azuama, Onyedikachi Cecil [1 ]
Bouffartigues, Emeline [1 ]
Benalia, Nabiha [2 ]
Tortuel, Damien [1 ]
Maillot, Olivier [1 ]
Chemat, Smain [3 ]
Kritsanida, Marina [2 ]
Feuilloley, Marc [1 ]
Orange, Nicole [1 ]
Michel, Sylvie [2 ]
Lesouhaitier, Olivier [1 ]
Cornelis, Pierre [1 ]
Grougnet, Raphael [2 ]
Boutefnouchet, Sabrina [2 ]
Chevalier, Sylvie [1 ]
机构
[1] Normandie Univ, Univ Rouen Normandie, LMSM, Lab Microbiol Signaux & Microenvironm,EA4312, Evreux, France
[2] Univ Paris 05, Equipe Prod Nat Anal & Synth PNAS, Fac Sci Pharmaceut & Biol, CiTCoM,UMR 8038,CNRS, Paris, France
[3] CRAPC, Ctr Rech Sci & Tech Anal Physicochim, Bou Ismail, Algeria
关键词
Pistacia lentiscus; fruit-derived extract; ginkgolic acids; anti-virulence; Pseudomonas aeruginosa; membrane stiffness; ECF sigma SigX; GINKGO-BILOBA; OUTER-MEMBRANE; SIGMA-FACTOR; CAENORHABDITIS-ELEGANS; PYOCYANIN; DRUGS; STRATEGIES; MECHANISM; DISCOVERY; EXTRACTS;
D O I
10.3389/fmicb.2020.01068
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa is capable to deploy a collection of virulence factors that are not only essential for host infection and persistence, but also to escape from the host immune system and to become more resistant to drug therapies. Thus, developing anti-virulence agents that may directly counteract with specific virulence factors or disturb higher regulatory pathways controlling the production of virulence armories are urgently needed. In this regard, this study reports that Pistacia lentiscus L. fruit cyclohexane extract (PLFE1) thwarts P. aeruginosa virulence by targeting mainly the pyocyanin pigment production by interfering with 4-hydroxy-2-alkylquinolines molecules production. Importantly, the anti-virulence activity of PLFE1 appears to be associated with membrane homeostasis alteration through the modulation of SigX, an extracytoplasmic function sigma factor involved in cell wall stress response. A thorough chemical analysis of PLFE1 allowed us to identify the ginkgolic acid (C17:1) and hydroginkgolic acid (C15:0) as the main bioactive membrane-interactive compounds responsible for the observed increased membrane stiffness and anti-virulence activity against P. aeruginosa. This study delivers a promising perspective for the potential future use of PLFE1 or ginkgolic acid molecules as an adjuvant therapy to fight against P. aeruginosa infections.
引用
收藏
页数:15
相关论文
共 32 条
  • [21] Bioinspired synthesis of gold nanoparticles from Hemidesmus indicus L. root extract and their antibiofilm efficacy against Pseudomonas aeruginosa
    Shilpha, Jayabalan
    Meyappan, Vadivel
    Sakthivel, Natarajan
    PROCESS BIOCHEMISTRY, 2022, 122 : 224 - 237
  • [22] Plant Growth Promoting Traits of Indigenous Phosphate Solubilizing Pseudomonas aeruginosa Isolates from Chilli (Capsicumannuum L.) Rhizosphere
    Linu, M. S.
    Asok, Aju K.
    Thampi, Meenu
    Sreekumar, J.
    Jisha, M. S.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2019, 50 (04) : 444 - 457
  • [23] Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1
    Vasavi, H. S.
    Arun, A. B.
    Rekha, P. D.
    JOURNAL OF MICROBIOLOGY IMMUNOLOGY AND INFECTION, 2016, 49 (01) : 8 - 15
  • [24] The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors
    Kandasamy, Saveetha
    Khan, Wajahatullah
    Kulshreshtha, Garima
    Evans, Franklin
    Critchley, Alan T.
    Fitton, J. H.
    Stringer, Damien N.
    Gardiner, Vicki-Anne
    Prithiviraj, Balakrishnan
    ALGAE, 2015, 30 (02) : 147 - 161
  • [25] Comprehensive assessment of antioxidant, antidiabetic, and anti-glycation properties of aqueous and methanolic extracts from Pistacia lentiscus L. leaves: a potential natural source for managing oxidative stress and diabetes-related complications
    El Allaoui, Hasnae
    Haboubi, Khadija
    El Ahmadi, Kawthar
    Bouhrim, Mohamed
    ElAbdouni, Aouatif
    Eto, Bruno
    Shahat, Abdelaaty A.
    Herqash, Rashed N.
    El Bestrioui, Mohmed
    Zouaoui, Zakia
    Nhiri, Mohamed
    FRONTIERS IN PHARMACOLOGY, 2025, 16
  • [26] Isolation of an anti-entomopathogenic fungal protein secreted from Pseudomonas aeruginosa BGf-2: An intestinal bacteriam of Blattella germanica (L.)
    Zhang, Fan
    Yang, Chenglong
    Zhang, Xiancui
    Zhu, Haiying
    Zhao, Dongqin
    Huang, Yanhong
    JOURNAL OF INVERTEBRATE PATHOLOGY, 2020, 173
  • [27] Characterization of an endophytic bacterium (Pseudomonas aeruginosa), originating from tomato (Solanum lycopersicum L.), and its ability to inhabit the parasitic weed Phelipanche aegyptiaca
    Iasur Kruh, Lilach
    Bari, Vinay Kumar
    Abu-Nassar, Jacline
    Lidor, Ofir
    Aly, Radi
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (07)
  • [28] Ligand-induced conformational changes of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa and Amaranthus hypochondriacus L. leaves affecting the reactivity of the catalytic thiol
    Muñoz-Clares, RA
    González-Segura, L
    Mújica-Jiménez, C
    Contreras-Díaz, L
    CHEMICO-BIOLOGICAL INTERACTIONS, 2003, 143 : 129 - 137
  • [29] Anti-infective potential of caffeic acid and epicatechin 3-gallate isolated from methanol extract of Euphorbia hirta (L.) against Pseudomonas aeruginosa
    Perumal, S.
    Mahmud, R.
    Ramanathan, S.
    NATURAL PRODUCT RESEARCH, 2015, 29 (18) : 1766 - 1769
  • [30] Bioactive compounds from Cucumis melo L. fruits as potential nutraceutical food ingredients and juice processing using membrane technology
    Mallek-Ayadi, Sana
    Bahloul, Neila
    Baklouti, Semia
    Kechaou, Nabil
    FOOD SCIENCE & NUTRITION, 2022, 10 (09): : 2922 - 2934