Fabrication of recyclable, superhydrophobic-superoleophilic quartz sand by facile two-step modification for oil-water separation

被引:30
作者
Zhang, Xin [1 ]
Hu, Chuanbo [1 ,2 ,3 ]
Lin, Junjie [1 ]
Yin, Huawei [1 ]
Shi, Jingchun [2 ]
Tang, Jianting [1 ]
Ma, Beiyue [4 ]
Li, Tingzhen [1 ]
Ren, Kangning [2 ]
机构
[1] Chongqing Three Gorges Univ, Sch Environm & Chem Engn, Key Lab Water Environm Evolut & Pollut Control Th, Chongqing 404100, Peoples R China
[2] Hong Kong Baptist Univ, Dept Chem, Hong Kong 999077, Peoples R China
[3] Mat Corros & Protect Key Lab Sichuan Prov, Zigong 643000, Peoples R China
[4] Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2022年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
Quartz sand; Oil-water separation; Superhydrophobic; Modification; Recyclable; ONE-STEP; CORROSION-RESISTANCE; COPPER MESH; LOW-COST; COMPOSITE; SURFACE; DURABILITY; PERFORMANCE; PROPERTY; COATINGS;
D O I
10.1016/j.jece.2021.107019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the highly frequency of oil spillages and chemical leakages, the application of superhydrophobic surface in oil-water separation is promising. Herein, the myristic acid/TiO2@raw quartz sand (MATC@sand) with superhydrophobic-superoleophilic properties has been judiciously designed and synthesized that could be utilized for oil-water separation. The as-prepared samples were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectrometer (XPS) and Fourier transform infrared spectroscopy (FTIR). The wetting behavior was evaluated by contact angle measurer and the result showed that the MATC@sand had a water contact angle of 165.0 degrees, a sliding angle less than 5 degrees and an oil contact angle of 0 degrees, which endowed the modified quartz sand with efficiently implement oil-water separation in various modes. The mechanism of oil-water separation using MATC@sand was exploited and it demonstrated the excellent ability of oil-water separation was mainly attributed to the synergistic effect between rough hierarchical micro/nanostructures and low surface energy. Moreover, for the sake of demonstrating its performance in practice application of oil-water separation, the durability, self-cleaning capacity, thermostability and anticorrosion of the MATC@sand are also measured to ensure the practical application. The results proved that the functional quartz sand is recyclable, economical and readily available, which made it have great prospects in practical application.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Facile fabrication of superhydrophobic fly ash-coated mesh for oil-water separation
    Zhang Xuemei
    Fu Feng
    Gao Xiaoming
    Hou Xiufang
    Niu Fengxing
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2022, 43 (02) : 237 - 242
  • [32] Construction of Superhydrophobic-Superoleophilic Filter Paper by Seed Growing Method and Its Application in Oil-water Separation
    Yang F.
    Zhang Y.
    Liu X.
    Chen Y.
    Yang W.
    Cailiao Daobao/Materials Reports, 2020, 34 (02): : 04132 - 04136
  • [33] Facile preparation of superhydrophobic/superoleophilic diatomite porous ceramics for efficient oil-water separation
    Li, Xiaojian
    Wu, Wenhao
    Han, Lei
    Li, Zhi
    Wang, Honghong
    Dong, Longhao
    Jia, Quanli
    Huang, Zhong
    Zhang, Haijun
    Zhang, Shaowei
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2022, 130 (11) : 867 - 874
  • [34] Electrospinning superhydrophobic-superoleophilic PVDF-SiO2 nanofibers membrane for oil-water separation
    Jiang, Shan
    Meng, Xiangfei
    Chen, Binling
    Wang, Nannan
    Chen, Guangkai
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (47)
  • [35] Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation
    Chen, Jiucun
    You, Hui
    Xu, Liqun
    Li, Tianhao
    Jiang, Xianquan
    Li, Chang Ming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 506 : 659 - 668
  • [36] Durable superhydrophobic and superoleophilic filter paper for oil-water separation prepared by a colloidal deposition method
    Du, Chuan
    Wang, Jiadao
    Chen, Zhifu
    Chen, Darong
    APPLIED SURFACE SCIENCE, 2014, 313 : 304 - 310
  • [37] Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review
    Rasouli, Seyedabbas
    Rezaei, Nima
    Hamedi, Hamideh
    Zendehboudi, Sohrab
    Duan, Xili
    MATERIALS & DESIGN, 2021, 204
  • [38] Facile fabrication of superhydrophobic and superoleophilic green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash for oil/water separation
    Jamalludin, Mohd Riduan
    Hubadillah, Siti Khadijah
    Harun, Zawati
    Othman, Mohd Hafiz Dzarfan
    Yunos, Muhamad Zaini
    Ismail, Ahmad Fauzi
    Salleh, Wan Norharyati Wan
    ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (01) : 3558 - 3570
  • [39] Electrospun composite membrane with superhydrophobic-superoleophilic for efficient water-in-oil emulsion separation and oil adsorption
    Zhang, Taiheng
    Zhang, Chongyang
    Zhao, Guoqing
    Li, Caifeng
    Liu, Lukai
    Yu, Jingang
    Jiao, Feipeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 602 (602)
  • [40] In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation
    Yue, Xuejie
    Li, Jiaxin
    Zhang, Tao
    Qiu, Fengxian
    Yang, Dongya
    Xue, Mengwei
    CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 117 - 123