ON EXTREMAL QUASICONFORMAL MAPPINGS OF NON-LANDSLIDE TYPE

被引:0
作者
Fan Jinhua [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Peoples R China
关键词
Extremal quasiconformal mapping; variability set; non-landslide type; UNIQUE EXTREMALITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S = {(x, y) : 0 < x < 1,0 < y < 1}, and let f be a quasiconformal mapping on S. It is proved that there is at least one extremal quasiconformal mapping of non-landslide type in the Teichmuller equivalence class [f]. This gives a positive answer to the problem proposed by Z. Li in a recent paper.
引用
收藏
页码:2729 / 2733
页数:5
相关论文
共 11 条
[1]  
[Anonymous], SIBERIAN MATH J
[2]   Unique extremality [J].
Bozin, V ;
Lakic, N ;
Markovic, V ;
Mateljevic, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :299-338
[4]  
LEHTO O, 1987, UNIVALENT FUNCTIONS, P109
[5]   A note on extremal quasi-conformal mappings [J].
Li Zhong .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) :63-70
[6]   The unique extremality counterexample [J].
Reich, E .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :339-347
[7]  
Reich E., 2000, LIBERTAS MATH, V20, P33
[8]  
REICH E., 1974, Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers), P375, DOI [10.1016/B978-0-12-044850-0.50035-6, DOI 10.1016/B978-0-12-044850-0.50035-6]
[9]  
Reich E., 2002, Handbook of Complex Analysis, V1, P75, DOI DOI 10.1016/S1874-5709(02)80005-1
[10]  
Strebel K, 1998, ANN ACAD SCI FENN-M, V23, P475