UNIFORM APPROXIMATION OF METRICS BY GRAPHS

被引:0
|
作者
Burago, Dmitri [1 ]
Ivanov, Sergei [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
关键词
Metric graph; Gromov-Hausdorff distance;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a metric graph is uniformly bounded if the degrees of all vertices are uniformly bounded and the lengths of edges are pinched between two positive constants; a metric space is approximable by a uniform graph if there is one within a finite Gromov-Hausdorff distance. We show that the Euclidean plane and Gromov hyperbolic geodesic spaces with bounded geometry are approximable by uniform graphs, and pose a number of open problems.
引用
收藏
页码:1241 / 1256
页数:16
相关论文
共 50 条
  • [21] Self-stabilizing Metric Graphs
    Gmyr, Robert
    Lefevre, Jonas
    Scheideler, Christian
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2016, 2016, 10083 : 248 - 262
  • [22] Rayleigh estimates for differential operators on graphs
    Kurasov, Pavel
    Naboko, Sergey
    JOURNAL OF SPECTRAL THEORY, 2014, 4 (02) : 211 - 219
  • [23] Trace formulae for Schrodinger systems on graphs
    Yang, Chuan-Fu
    Huang, Zhen-You
    Yang, Xiao-Ping
    TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (02) : 181 - 196
  • [24] Computing linear systems on metric graphs
    Lin, Bo
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 87 : 54 - 67
  • [25] The continuum limit of critical random graphs
    Addario-Berry, L.
    Broutin, N.
    Goldschmidt, C.
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) : 367 - 406
  • [26] Spectral minimal partitions of unbounded metric graphs
    Hofmann, Matthias
    Kennedy, James B.
    Serio, Andrea
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (02) : 593 - 622
  • [27] A Glazman-Povzner-Wienholtz theorem on graphs
    Kostenko, Aleksey
    Malamud, Mark
    Nicolussi, Noema
    ADVANCES IN MATHEMATICS, 2022, 395
  • [28] On the viscous Burgers equation on metric graphs and fractals
    Hinz, Michael
    Meinert, Melissa
    JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (02) : 137 - 182
  • [29] Fokas Method for the Heat Equation on Metric Graphs
    Sobirov Z.A.
    Eshimbetov M.R.
    Journal of Mathematical Sciences, 2024, 278 (3) : 530 - 545
  • [30] Spectral properties of Schrodinger operators on decorated graphs
    Brüning, J
    Geiler, VA
    Lobanov, IS
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 858 - 861