Simulation output analysis using the threshold bootstrap

被引:13
|
作者
Park, DS
Kim, YB
Shin, KI
Willemain, TR [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Decis Sci & Engn Syst, Troy, NY 12180 USA
[2] Korea Telecom, Management Res Lab, Sungnam 463711, South Korea
[3] Sungkyunkwan Univ, Sch Syst & Management Engn, Suwon, South Korea
[4] Hankuk Univ Foreign Studies, Dept Stat, Yongin, South Korea
关键词
simulation; time series; bootstrap;
D O I
10.1016/S0377-2217(00)00209-5
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The threshold bootstrap extends the bootstrap method of inference to autocorrelated data series, such as the outputs of discrete event simulations. The method works by resampling random chunks that are some multiple of a cycle. A cycle consists of alternating high and low runs that are created when the time series wanders back and forth across a threshold. Monte Carlo simulations show that the threshold bootstrap performs well in estimating the standard error of the sample mean and constructing confidence intervals with appropriate coverage and compact half-widths. We establish the asymptotic unbiasedness and consistency of threshold bootstrap estimates in the case of the sample mean. Comparison with the method of batch means and the moving blocks bootstrap shows that the threshold bootstrap is an attractive alternative for simulation output analysis. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [41] Statistical analysis of discrepant radioecological data using Monte Carlo Bootstrap Method
    Casado da Silva, Arykerne Nascimento
    Amaral, Romilton dos Santos
    dos Santos Junior, Jose Araujo
    Vieira, Jose Wilson
    Cezar Menezes, Romulo Simoes
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2015, 306 (03) : 571 - 577
  • [42] Uncertainty analysis of SPI and SRI calculation using bootstrap in the Mediterranean regions of Algeria
    Achite, Mohammad
    Bazrafshan, Ommolbanin
    Pakdaman, Zohreh
    Walega, Andrzej
    Pourhaghverdi, Fateme
    Caloiero, Tommaso
    NATURAL HAZARDS, 2024, 120 (12) : 11031 - 11061
  • [43] Statistical analysis of discrepant radioecological data using Monte Carlo Bootstrap Method
    Arykerne Nascimento Casado da Silva
    Romilton dos Santos Amaral
    José Araújo dos Santos Júnior
    José Wilson Vieira
    Rômulo Simões Cezar Menezes
    Journal of Radioanalytical and Nuclear Chemistry, 2015, 306 : 571 - 577
  • [44] Middle- and Long-Term Streamflow Forecasting and Uncertainty Analysis Using Lasso-DBN-Bootstrap Model
    Chu, Haibo
    Wei, Jiahua
    Jiang, Yuan
    WATER RESOURCES MANAGEMENT, 2021, 35 (08) : 2617 - 2632
  • [45] Systems Analysis Using Simulation
    Evers, Philip T.
    Wan, Xiang
    JOURNAL OF BUSINESS LOGISTICS, 2012, 33 (02) : 80 - 89
  • [46] DISTRIBUTION ESTIMATION USING CONCOMITANTS OF ORDER-STATISTICS, WITH APPLICATION TO MONTE-CARLO SIMULATION FOR THE BOOTSTRAP
    DO, KA
    HALL, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (02): : 595 - 607
  • [47] The export-output growth nexus in Japan: a bootstrap rolling window approach
    Mehmet Balcilar
    Zeynel Abidin Ozdemir
    Empirical Economics, 2013, 44 : 639 - 660
  • [48] Construction of prediction intervals for Palmer Drought Severity Index using bootstrap
    Beyaztas, Ufuk
    Arikan, Bugrayhan Bickici
    Beyaztas, Beste Hamiye
    Kahya, Ercan
    JOURNAL OF HYDROLOGY, 2018, 559 : 461 - 470
  • [49] The export-output growth nexus in Japan: a bootstrap rolling window approach
    Balcilar, Mehmet
    Ozdemir, Zeynel Abidin
    EMPIRICAL ECONOMICS, 2013, 44 (02) : 639 - 660
  • [50] Modal identification of structures from input/output data using the expectation-maximization algorithm and uncertainty quantification by mean of the bootstrap
    Cara, Javier
    STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (01)