Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery

被引:45
作者
Ghosh, Arthita [1 ]
Ehrlich, Max [1 ]
Shah, Sohil [1 ]
Davis, Larry [1 ]
Chellappa, Rama [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
来源
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2018年
关键词
CLASSIFICATION;
D O I
10.1109/CVPRW.2018.00047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a semantic segmentation algorithm for RGB remote sensing images. Our method is based on the Dilated Stacked U-Nets architecture. This state-of-the-art method has been shown to have good performance in other applications. We perform additional post-processing by blending image tiles and degridding the result. Our method gives competitive results on the DeepGlobe dataset.
引用
收藏
页码:252 / 256
页数:5
相关论文
共 30 条
[1]  
[Anonymous], COMMUNICATION
[2]  
[Anonymous], 2017, ICCV
[3]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.348
[4]  
[Anonymous], 2017, CVPR
[5]  
[Anonymous], 2018, IEEE C COMP VIS PATT
[6]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[7]  
[Anonymous], 2016, INT C LEARNING REPRE
[8]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[9]   Fast, Exact and Multi-scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs [J].
Chandra, Siddhartha ;
Kokkinos, Iasonas .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :402-418
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848