A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations

被引:136
作者
Esteban, Ruben [1 ,2 ]
Zugarramurdi, Asier [3 ,4 ]
Zhang, Pu [5 ,6 ,7 ]
Nordlander, Peter [8 ]
Garcia-Vidal, Francisco J. [2 ,6 ,7 ]
Borisov, Andrei G. [2 ,3 ]
Aizpurua, Javier [1 ,2 ]
机构
[1] Mat Phys Ctr CSIC UPV EHU, Donostia San Sebastian 20018, Spain
[2] DIPC, Donostia San Sebastian 20018, Spain
[3] Univ Paris 11, Inst Sci Mol Orsay, CNRS, UMR 8214, Paris, France
[4] Aalto Univ, Dept Appl Phys, COMP, FIN-00076 Espoo, Finland
[5] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[6] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[7] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[8] Rice Univ, Dept Elect & Comp Engn, Lab Nanophoton, Houston, TX 77005 USA
基金
欧洲研究理事会;
关键词
ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON; FIELD ENHANCEMENT; METALLIC NANOPARTICLES; ELECTROMAGNETIC-FIELDS; SILVER NANOPARTICLES; LIGHT CONCENTRATION; NANOWIRE DIMERS; SIZE; RESONANCES;
D O I
10.1039/c4fd00196f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Angstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.
引用
收藏
页码:151 / 183
页数:33
相关论文
共 130 条
[71]   Optical Properties of Nanowire Dimers with a Spatially Nonlocal Dielectric Function [J].
McMahon, Jeffrey M. ;
Gray, Stephen K. ;
Schatz, George C. .
NANO LETTERS, 2010, 10 (09) :3473-3481
[72]   Nonlocal Optical Response of Metal Nanostructures with Arbitrary Shape [J].
McMahon, Jeffrey M. ;
Gray, Stephen K. ;
Schatz, George C. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[73]   SURFACE CONTRIBUTION TO THE OPTICAL-PROPERTIES OF NONLOCAL SYSTEMS [J].
MOCHAN, WL ;
FUCHS, R ;
BARRERA, RG .
PHYSICAL REVIEW B, 1983, 27 (02) :771-780
[74]   A generalized non-local optical response theory for plasmonic nanostructures [J].
Mortensen, N. A. ;
Raza, S. ;
Wubs, M. ;
Sondergaard, T. ;
Bozhevolnyi, S. I. .
NATURE COMMUNICATIONS, 2014, 5
[75]   SURFACE-ENHANCED SPECTROSCOPY [J].
MOSKOVITS, M .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :783-826
[76]   Resonant optical antennas [J].
Mühlschlegel, P ;
Eisler, HJ ;
Martin, OJF ;
Hecht, B ;
Pohl, DW .
SCIENCE, 2005, 308 (5728) :1607-1609
[77]   Plasmon hybridizaton in nanoparticle dimers [J].
Nordlander, P ;
Oubre, C ;
Prodan, E ;
Li, K ;
Stockman, MI .
NANO LETTERS, 2004, 4 (05) :899-903
[78]   Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces [J].
Pasquale, Alyssa J. ;
Reinhard, Bjoern M. ;
Dal Negro, Luca .
ACS NANO, 2011, 5 (08) :6578-6585
[79]   Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities [J].
Perez-Gonzalez, O. ;
Zabala, N. ;
Borisov, A. G. ;
Halas, N. J. ;
Nordlander, P. ;
Aizpurua, J. .
NANO LETTERS, 2010, 10 (08) :3090-3095
[80]   Theory of surface plasmons and surface-plasmon polaritons [J].
Pitarke, J. M. ;
Silkin, V. M. ;
Chulkov, E. V. ;
Echenique, P. M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (01) :1-87