A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations

被引:136
作者
Esteban, Ruben [1 ,2 ]
Zugarramurdi, Asier [3 ,4 ]
Zhang, Pu [5 ,6 ,7 ]
Nordlander, Peter [8 ]
Garcia-Vidal, Francisco J. [2 ,6 ,7 ]
Borisov, Andrei G. [2 ,3 ]
Aizpurua, Javier [1 ,2 ]
机构
[1] Mat Phys Ctr CSIC UPV EHU, Donostia San Sebastian 20018, Spain
[2] DIPC, Donostia San Sebastian 20018, Spain
[3] Univ Paris 11, Inst Sci Mol Orsay, CNRS, UMR 8214, Paris, France
[4] Aalto Univ, Dept Appl Phys, COMP, FIN-00076 Espoo, Finland
[5] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[6] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[7] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[8] Rice Univ, Dept Elect & Comp Engn, Lab Nanophoton, Houston, TX 77005 USA
基金
欧洲研究理事会;
关键词
ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON; FIELD ENHANCEMENT; METALLIC NANOPARTICLES; ELECTROMAGNETIC-FIELDS; SILVER NANOPARTICLES; LIGHT CONCENTRATION; NANOWIRE DIMERS; SIZE; RESONANCES;
D O I
10.1039/c4fd00196f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Angstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.
引用
收藏
页码:151 / 183
页数:33
相关论文
共 130 条
[1]   Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing [J].
Acimovic, Srdjan S. ;
Kreuzer, Mark P. ;
Gonzalez, Maria U. ;
Quidant, Romain .
ACS NANO, 2009, 3 (05) :1231-1237
[2]   Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams [J].
Aizpurua, Javier ;
Rivacoba, Alberto .
PHYSICAL REVIEW B, 2008, 78 (03)
[3]   Light Concentration at the Nanometer Scale [J].
Alvarez-Puebla, Ramon ;
Liz-Marzan, Luis M. ;
Javier Garcia de Abajo, F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (16) :2428-2434
[4]  
[Anonymous], 1998, Classical Electrodynamics
[5]   Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime [J].
Atay, T ;
Song, JH ;
Nurmikko, AV .
NANO LETTERS, 2004, 4 (09) :1627-1631
[6]   Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Fernandez-Dominguez, Antonio I. ;
Sonnefraud, Yannick ;
Maier, Stefan A. ;
Pendry, J. B. .
NANO LETTERS, 2010, 10 (07) :2574-2579
[7]   Observation of intrinsic size effects in the optical response of individual gold nanoparticles [J].
Berciaud, S ;
Cognet, L ;
Tamarat, P ;
Lounis, B .
NANO LETTERS, 2005, 5 (03) :515-518
[8]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[9]   Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging [J].
Cang, Hu ;
Labno, Anna ;
Lu, Changgui ;
Yin, Xiaobo ;
Liu, Ming ;
Gladden, Christopher ;
Liu, Yongmin ;
Zhang, Xiang .
NATURE, 2011, 469 (7330) :385-+
[10]   Competition between surface screening and size quantization for surface plasmons in nanoparticles [J].
Carmina Monreal, R. ;
Antosiewicz, Tomasz J. ;
Peter Apell, S. .
NEW JOURNAL OF PHYSICS, 2013, 15