Optimal non-adaptive probabilistic group testing in general sparsity regimes

被引:5
|
作者
Bay, Wei Heng [1 ,2 ,3 ]
Scarlett, Jonathan [1 ,2 ,3 ]
Price, Eric [4 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, 15 Comp Dr, Singapore 117417, Singapore
[2] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[3] Natl Univ Singapore, Inst Data Sci, 3 Res Link, Singapore 117602, Singapore
[4] Univ Texas Austin, Dept Comp Sci, 2317 Speedway, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
group testing; sparsity; information-theoretic limits; DEFECTIVE MEMBERS; BOUNDS;
D O I
10.1093/imaiai/iaab020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of noiseless non-adaptive probabilistic group testing, in which the goal is high-probability recovery of the defective set. We show that in the case of n items among which k are defective, the smallest possible number of tests equals min{C(k,n)k log n, n} up to lower-order asymptotic terms, where C-k,C-n is a uniformly bounded constant (varying depending on the scaling of k with respect to n) with a simple explicit expression. The algorithmic upper bound follows from a minor adaptation of an existing analysis of the Definite Defectives algorithm, and the algorithm-independent lower bound builds on existing works for the regimes k <= n(1-Omega(1)) and k = circle minus(n). In sufficiently sparse regimes (including k = o(n/lg n)),our main result generalizes that of Coja-Oghlan et al. (2020) by avoiding the assumption k <= n(1-Omega(1)), whereas in sufficiently dense regimes (including k = omega(n/log n)), our main result shows that individual testing is asymptotically optimal for any non-zero target success probability, thus strengthening an existing result of Aldridge (2019, IEEE Trans. Inf. Theory, 65, 2058-2061) in terms of both the error probability and the assumed scaling of k.
引用
收藏
页码:1037 / 1053
页数:17
相关论文
共 21 条
  • [1] Noisy Non-Adaptive Group Testing: A (Near-)Definite Defectives Approach
    Scarlett, Jonathan
    Johnson, Oliver
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (06) : 3775 - 3797
  • [2] Non-adaptive group testing on graphs with connectivity
    Luo, Song
    Matsuura, Yuji
    Miao, Ying
    Shigeno, Maiko
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (01) : 278 - 291
  • [3] Non-adaptive group testing on graphs with connectivity
    Song Luo
    Yuji Matsuura
    Ying Miao
    Maiko Shigeno
    Journal of Combinatorial Optimization, 2019, 38 : 278 - 291
  • [4] Subquadratic non-adaptive threshold group testing
    De Marco, Gianluca
    Jurdzinski, Tomasz
    Kowalski, Dariusz R.
    Rozanski, Michal
    Stachowiak, Grzegorz
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 111 : 42 - 56
  • [5] Subquadratic Non-adaptive Threshold Group Testing
    De Marco, Gianluca
    Jurdzinski, Tomasz
    Rozanski, Michal
    Stachowiak, Grzegorz
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2017, 2017, 10472 : 177 - 189
  • [6] Improved Constructions for Non-adaptive Threshold Group Testing
    Cheraghchi, Mahdi
    ALGORITHMICA, 2013, 67 (03) : 384 - 417
  • [7] Bounds for the Number of Tests in Non-adaptive Randomized Algorithms for Group Testing
    Bshouty, Nader H.
    Haddad, George
    Haddad-Zaknoon, Catherine A.
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 101 - 112
  • [8] Constraining the number of positive responses in adaptive, non-adaptive, and two-stage group testing
    De Bonis, Annalisa
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (04) : 1254 - 1287
  • [9] Non-adaptive complex group testing with multiple positive sets
    Chin, Francis Y. L.
    Leung, Henry C. M.
    Yiu, S. M.
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 11 - 18
  • [10] Non-adaptive Group-Testing Aggregate MAC Scheme
    Hirose, Shoichi
    Shikata, Junji
    INFORMATION SECURITY PRACTICE AND EXPERIENCE (ISPEC 2018), 2018, 11125 : 357 - 372