The Grunwald-Letnikov method for fractional differential equations

被引:306
|
作者
Scherer, Rudolf [1 ]
Kalla, Shyam L. [2 ]
Tang, Yifa [3 ]
Huang, Jianfei [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl & Numer Math, D-76128 Karlsruhe, Germany
[2] Vyas Inst Higher Educ, Inst Math, Jodhpur, Rajasthan, India
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
关键词
Fractional derivatives; Fractional differential equations; Grunwald-Letnikov approximation; Difference methods; Binomial coefficients; Stability; DIFFUSION-WAVE EQUATION; NUMERICAL-SOLUTION; OIL STRATA; SCHEME;
D O I
10.1016/j.camwa.2011.03.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical treatment of fractional differential equations. Based on the Grunwald-Letnikov definition of fractional derivatives, finite difference schemes for the approximation of the solution are discussed. The main properties of these explicit and implicit methods concerning the stability, the convergence and the error behavior are studied related to linear test equations. The asymptotic stability and the absolute stability of these methods are proved. Error representations and estimates for the truncation, propagation and global error are derived. Numerical experiments are given. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:902 / 917
页数:16
相关论文
共 50 条
  • [21] Variable-, Fractional-Order Grunwald-Letnikov Backward Difference Selected Properties
    Mozyrska, Dorota
    Ostalczyk, Piotr
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 634 - 637
  • [22] Analysis of subdiffusion in disordered and fractured media using a Grunwald-Letnikov fractional calculus model
    Obembe, Abiola D.
    Abu-Khamsin, Sidqi A.
    Hossain, M. Enamul
    Mustapha, Kassem
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1231 - 1250
  • [23] Sharp error estimate of a Grunwald-Letnikov scheme for reaction-subdiffusion equations
    Chen, Hu
    Shi, Yanhua
    Zhang, Jiwei
    Zhao, Yanmin
    NUMERICAL ALGORITHMS, 2022, 89 (04) : 1465 - 1477
  • [24] Approximation of Grunwald-Letnikov Fractional Derivative for FDTD Modeling of Cole-Cole Media
    Rekanos, Ioannis T.
    Yioultsis, Traianos V.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 181 - 184
  • [25] Grunwald-Letnikov分数阶导数的理论分析
    马芳芳
    靳丹丹
    么焕民
    哈尔滨师范大学自然科学学报, 2011, 27 (03) : 32 - 34
  • [27] Efficient computation of the Grunwald-Letnikov method for ARM-based Implementations of Fractional-Order Chaotic Systems
    Clemente-Lopez, D.
    Munoz-Pacheco, J. M.
    Felix-Beltran, O. G.
    Volos, C.
    2019 8TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2019,
  • [28] About accuracy increase of fractional order derivative and integral computations by applying the Grunwald-Letnikov formula
    Brzezinski, Dariusz W.
    Ostalczyk, Piotr
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 40 : 151 - 162
  • [29] FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grunwald-Letnikov method
    Dalia Pano-Azucena, Ana
    Ovilla-Martinez, Brisbane
    Tlelo-Cuautle, Esteban
    Manuel Munoz-Pacheco, Jesus
    Gerardo de la Fraga, Luis
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 516 - 527
  • [30] Efficient computation of the Grunwald-Letnikov fractional diffusion derivative using adaptive time step memory
    MacDonald, Christopher L.
    Bhattacharya, Nirupama
    Sprouse, Brian P.
    Silva, Gabriel A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 221 - 236