First laboratory results with the LINC-NIRVANA high layer wavefront sensor

被引:14
|
作者
Zhang, Xianyu [1 ,2 ,3 ,4 ]
Gaessler, Wolfgang [1 ]
Conrad, Albert R. [1 ]
Bertram, Thomas [1 ]
Arcidiacono, Carmelo [5 ]
Herbst, Thomas M. [1 ]
Kuerster, Martin [1 ]
Bizenberger, Peter [1 ]
Meschke, Daniel [1 ]
Rix, Hans-Walter [1 ]
Rao, Changhui [2 ,3 ]
Mohr, Lars [1 ]
Briegel, Florian [1 ]
Kittmann, Frank [1 ]
Berwein, Juergen [1 ]
Trowitzsch, Jan [1 ]
Schreiber, Laura [6 ]
Ragazzoni, Roberto [7 ]
Diolaiti, Emiliano [8 ]
机构
[1] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[2] Chinese Acad Sci, Inst Opt & Elect, Lab Adapt Opt, Chengdu 610209, Peoples R China
[3] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Peoples R China
[4] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[5] INAF Arcetri Astrophys Observ, I-50125 Florence, Italy
[6] Univ Bologna, Dept Astron, I-40126 Bologna, Italy
[7] INAF Astron Observ Padova, I-35122 Padua, Italy
[8] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy
来源
OPTICS EXPRESS | 2011年 / 19卷 / 17期
关键词
D O I
10.1364/OE.19.016087
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV. (C) 2011 Optical Society of America
引用
收藏
页码:16087 / 16095
页数:9
相关论文
共 49 条
  • [21] Image reconstruction for observations with a high dynamic range: LINC-NIRVANA simulations of a stellar jet
    La Camera, Andrea
    Antoniucci, Simone
    Bertero, Mario
    Boccacci, Patrizia
    Lorenzetti, Dario
    Nisini, Brunella
    OPTICAL AND INFRARED INTERFEROMETRY III, 2012, 8445
  • [22] The Multiple Field of View Layer Oriented wavefront sensing system of LINC-NIRVANA: two arcminutes of corrected field using solely Natural Guide Stars
    Farinato, J.
    Ragazzoni, R.
    Arcidiacono, C.
    Brunelli, A.
    Dima, M.
    Gentile, G.
    Viottoa, V.
    Diolaiti, E.
    Foppiani, I.
    Lornbini, M.
    Schreiber, L.
    Bitzenberger, P.
    De Bonis, F.
    Egner, S.
    Gaessler, W.
    Herbst, T.
    Kuerster, M.
    Mohr, L.
    Rohloff, R-R
    ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
  • [23] The LINC-NIRVANA Fizeau interferometric imager - final lab integration, First Light experiments and challenges
    Herbst, T. M.
    Ragazzoni, R.
    Eckart, A.
    Weigelt, G.
    OPTICAL AND INFRARED INTERFEROMETRY IV, 2014, 9146
  • [24] The crossed-sine wavefront sensor: first tests and results
    Schreiber, Laura
    Feng, Yan
    Spang, Alain
    Henault, Francois
    Correia, Jean-Jacques
    Stadler, Eric
    Mouillet, David
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION V, 2022, 12188
  • [25] Concepts, laboratory and telescope test results of the Plenoptic Camera as a wavefront sensor
    Rodriguez-Ramos, L. F.
    Montilla, I.
    Fernandez-Valdivia, J. J.
    Trujillo-Sevilla, J. L.
    Rodriguez-Ramos, J. M.
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [26] Laboratory testing the layer oriented wavefront sensor for the Multiconjugate Adaptive optics Demonstrator
    Arcidiacono, Cannelo
    Lombini, Matteo
    Diolaiti, Emiliano
    Farinato, Jacopo
    Ragazzoni, Roberto
    ADVANCES IN ADAPTIVE OPTICS II, PRS 1-3, 2006, 6272 : U756 - U767
  • [27] First on-sky results of the CAWS wavefront sensor on the CANARY experiment
    Dubost, Nicolas
    Bharmal, Nazim
    Langlois, Maud
    Loupias, Magali
    Schott, Clement
    Tallon, Michel
    Staykov, Lazar
    Bardou, Lisa
    Osborn, James
    Chemla, Fanny
    Cohen, Matthieu
    Buey, Tristan
    Gendron, Eric
    Morris, Tim
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
  • [28] Results from the laboratory demonstration of the non-linear Curvature Wavefront Sensor
    Mateen, Mala
    Garrel, Vincent
    Hart, Michael
    Guyon, Olivier
    ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [29] Beating the confusion limit: The necessity of high angular resolution for probing the physics of Sagittarius A* and its environment: Opportunities for LINC-NIRVANA (LBT), GRAVITY (VLTI) and METIS (E-ELT)
    Eckart, A.
    Sabha, N.
    Witzel, G.
    Straubmeier, C.
    Shahzamanian, B.
    Valencia-S, M.
    Garcia-Marin, Macarena
    Horrobin, M.
    Moser, L.
    Zuther, J.
    Fischer, S.
    Rauch, C.
    Rost, S.
    Iserlohe, C.
    Yazici, S.
    Smajic, S.
    Wiest, M.
    Araujo-Hauck, C.
    Wank, I.
    OPTICAL AND INFRARED INTERFEROMETRY III, 2012, 8445
  • [30] PYRAMIR: first on-sky results from an infrared pyramid wavefront sensor
    Feldt, M.
    Peter, D.
    Hippler, S.
    Henning, Th.
    Aceituno, J.
    Goto, M.
    ADVANCES IN ADAPTIVE OPTICS II, PRS 1-3, 2006, 6272 : U423 - U428