On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential

被引:24
作者
Bensouilah, Abdelwahab [1 ]
Van Duong Dinh [2 ]
Zhu, Shihui [3 ,4 ]
机构
[1] Univ Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
BLOW-UP SOLUTIONS; CRITICAL NLS; SCATTERING;
D O I
10.1063/1.5038041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the stability of standing waves for the focusing nonlinear Schrodinger equation with an inverse-square potential. Using the profile decomposition arguments, we show that in the L-2-subcritical case, i.e., 0 < alpha < 4/d, the sets of ground state standing waves are orbitally stable. In the L-2-critical case, i.e., alpha = 4/d, we show that ground state standing waves are strongly unstable by blow-up. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 33 条
[1]  
Bensouilah A, 2018, ARXIV180408752
[2]  
Bensouilah A., 2018, ARXIV180305944
[3]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[4]   UNIFORM RESOLVENT AND STRICHARTZ ESTIMATES FOR SCHRODINGER EQUATIONS WITH CRITICAL SINGULARITIES [J].
Bouclet, Jean-Marc ;
Mizutani, Haruya .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) :7293-7333
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[7]   Quantum anomaly in molecular physics [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAG .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :art. no.-220402
[8]   SINGULAR POTENTIALS [J].
CASE, KM .
PHYSICAL REVIEW, 1950, 80 (05) :797-806
[9]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations