Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems

被引:16
作者
Duan, Beiping [1 ,2 ]
Jin, Bangti [3 ]
Lazarov, Raytcho [2 ,4 ]
Pasciak, Joseph [2 ]
Zhou, Zhi [5 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[4] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Space-Time Finite Element Method; Petrov-Galerkin Method; Fractional Diffusion; Error Estimates; FINITE-ELEMENT-METHOD; SPECTRAL METHOD; SOBOLEV SPACES; EQUATIONS; SCHEMES;
D O I
10.1515/cmam-2017-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a space-time Petrov-Galerkin finite element method for a time-fractional diffusion equation involving a Riemann-Liouville fractional derivative of order alpha is an element of(0, 1) in time and zero initial data. We derive a proper weak formulation involving different solution and test spaces and show the inf-sup condition for the bilinear form and thus itswell-posedness. Further, we develop a novel finite element formulation, show the well-posedness of the discrete problem, and derive error bounds in both energy and L-2 norms for the finite element solution. In the proof of the discrete inf-sup condition, a certain nonstandard L-2 stability property of the L-2 projection operator plays a key role. We provide extensive numerical examples to verify the convergence analysis.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 30 条
[11]  
Hytonen T., 2016, ERGEBNISSE MATH IHRE, V63
[12]   An analysis of the Crank-Nicolson method for subdiffusion [J].
Jin, Bangti ;
Li, Buyang ;
Zhou, Zhi .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) :518-541
[13]   A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :481-503
[14]   TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) :A146-A170
[15]   VARIATIONAL FORMULATION OF PROBLEMS INVOLVING FRACTIONAL ORDER DIFFERENTIAL OPERATORS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Pasciak, Joseph ;
Rundell, William .
MATHEMATICS OF COMPUTATION, 2015, 84 (296) :2665-2700
[16]   Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Pasciak, Joseph ;
Zhou, Zhi .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) :561-582
[17]   ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :445-466
[18]   Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation [J].
Larsson, Stig ;
Molteni, Matteo .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (01) :65-84
[19]  
Li L., 2016, PREPRINT
[20]   Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation [J].
Li, Xianjuan ;
Xu, Chuanju .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (05) :1016-1051