Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems

被引:16
作者
Duan, Beiping [1 ,2 ]
Jin, Bangti [3 ]
Lazarov, Raytcho [2 ,4 ]
Pasciak, Joseph [2 ]
Zhou, Zhi [5 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[4] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Space-Time Finite Element Method; Petrov-Galerkin Method; Fractional Diffusion; Error Estimates; FINITE-ELEMENT-METHOD; SPECTRAL METHOD; SOBOLEV SPACES; EQUATIONS; SCHEMES;
D O I
10.1515/cmam-2017-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a space-time Petrov-Galerkin finite element method for a time-fractional diffusion equation involving a Riemann-Liouville fractional derivative of order alpha is an element of(0, 1) in time and zero initial data. We derive a proper weak formulation involving different solution and test spaces and show the inf-sup condition for the bilinear form and thus itswell-posedness. Further, we develop a novel finite element formulation, show the well-posedness of the discrete problem, and derive error bounds in both energy and L-2 norms for the finite element solution. In the proof of the discrete inf-sup condition, a certain nonstandard L-2 stability property of the L-2 projection operator plays a key role. We provide extensive numerical examples to verify the convergence analysis.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2006, SPRINGER SER COMPUT
[3]   A TIME-SPACE FINITE-ELEMENT DISCRETIZATION TECHNIQUE FOR THE CALCULATION OF THE ELECTROMAGNETIC-FIELD IN FERROMAGNETIC MATERIALS [J].
AXELSSON, O ;
MAUBACH, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (09) :2085-2111
[4]   Arbitrary dimension convection-diffusion schemes for space-time discretizations [J].
Bank, Randolph E. ;
Vassilevski, Panayot S. ;
Zikatanov, Ludmil T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 :19-31
[5]  
Dahmen W, 2004, MATH COMPUT, V73, P1107
[6]   DISCRETE FUNCTIONAL ANALYSIS TOOLS FOR DISCONTINUOUS GALERKIN METHODS WITH APPLICATION TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Di Pietro, Daniele A. ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2010, 79 (271) :1303-1330
[7]   FINITE-DIFFERENCES SCHEMES ON GRIDS WITH LOCAL REFINEMENT IN TIME AND SPACE FOR PARABOLIC PROBLEMS .1. DERIVATION, STABILITY, AND ERROR ANALYSIS [J].
EWING, RE ;
LAZAROV, RD ;
VASSILEVSKI, PS .
COMPUTING, 1990, 45 (03) :193-215
[8]   Strong convergence of discrete DG solutions of the heat equation [J].
Girault, Vivette ;
Li, Jizhou ;
Riviere, Beatrice .
JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (04) :235-252
[9]   TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES [J].
Gorenflo, Rudolf ;
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :799-820
[10]  
Grisvard P., 1985, Elliptic Problems in Nonsmooth Domains, V24