Ensemble Learning for Relational Data

被引:0
|
作者
Eldardiry, Hoda [1 ]
Neville, Jennifer [2 ,3 ]
Rossi, Ryan A. [4 ]
机构
[1] Virginia Tech, Dept Comp Sci, 114 McBryde Hall, Blacksburg, VA 24061 USA
[2] Purdue Univ, Dept Comp Sci, 307 N Univ St, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Stat, 307 N Univ St, W Lafayette, IN 47907 USA
[4] Adobe Res, 345 Pk Ave, San Jose, CA 95110 USA
基金
美国国家科学基金会;
关键词
Ensemble learning; relational ensemble; collective classification; collective inference; bias-variance decomposition; relational machine learning; theoretical framework; VARIANCE; BIAS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a theoretical analysis framework for relational ensemble models. We show that ensembles of collective classifiers can improve predictions for graph data by reducing errors due to variance in both learning and inference. In addition, we propose a relational ensemble framework that combines a relational ensemble learning approach with a relational ensemble inference approach for collective classification. The proposed ensemble techniques are applicable for both single and multiple graph settings. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed framework. Finally, our experimental results support the theoretical analysis and confirm that ensemble algorithms that explicitly focus on both learning and inference processes and aim at reducing errors associated with both, are the best performers.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Spark-based ensemble learning for imbalanced data classification
    Ding J.
    Wang S.
    Jia L.
    You J.
    Jiang Y.
    International Journal of Performability Engineering, 2018, 14 (05) : 945 - 964
  • [42] Integrating Data and Model Space in Ensemble Learning by Visual Analytics
    Schneider, Bruno
    Jaeckle, Dominik
    Stoffel, Florian
    Diehl, Alexandra
    Fuchs, Johannes
    Keim, Daniel
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 483 - 496
  • [43] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [44] Investigation on the use of ensemble learning and big data in crop identification
    Ahmed, Sayed
    Mahmoud, Amira S.
    Farg, Eslam
    Mohamed, Amany M.
    Moustafa, Marwa S.
    Abutaleb, Khaled
    Saleh, Ahmed M.
    AbdelRahman, Mohamed A. E.
    AbdelSalam, Hisham M.
    Arafat, Sayed M.
    HELIYON, 2023, 9 (02)
  • [45] Ensemble learning for state recognition of payload from telemetry data
    Li H.
    Guo G.
    Hu T.
    Yang J.
    Dong Z.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2021, 43 (06): : 33 - 40
  • [46] An ensemble learning method for classification of multiple-label data
    Guangdong Power Dispatching and Controlling Center, Guangzhou, China
    不详
    不详
    J. Comput. Inf. Syst., 12 (4539-4546): : 4539 - 4546
  • [47] Dynamical Targeted Ensemble Learning for Streaming Data With Concept Drift
    Guo, Husheng
    Zhang, Yang
    Wang, Wenjian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8023 - 8036
  • [48] Ensemble Learning Using Individual Neonatal Data for Seizure Detection
    Borovac, Ana
    Gudmundsson, Steinn
    Thorvardsson, Gardar
    Moghadam, Saeed M.
    Nevalainen, Paivi
    Stevenson, Nathan
    Vanhatalo, Sampsa
    Runarsson, Thomas P.
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2022, 10
  • [49] Ensemble Learning to Perform Instance Segmentation over Synthetic Data
    Cerpa, Alonso
    Meza-Lovon, Graciela
    Loaiza Fernandez, Manuel E.
    ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT II, 2021, 13018 : 313 - 324
  • [50] imDC: an ensemble learning method for imbalanced classification with miRNA data
    Wang, C. Y.
    Hu, L. L.
    Guo, M. Z.
    Liu, X. Y.
    Zou, Q.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (01): : 123 - 133