Branched Poly(Aryl Piperidinium) Membranes for Anion-Exchange Membrane Fuel Cells

被引:171
作者
Wu, Xingyu [1 ]
Chen, Nanjun [2 ]
Klok, Harm-Anton [3 ,4 ]
Lee, Young Moo [2 ]
Hu, Xile [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn ISIC, Lab Inorgan Synth & Catalysis LSCI, BCH 3305, CH-1015 Lausanne, Switzerland
[2] Hanyang Univ, Coll Engn, Dept Energy Engn, Seoul 04763, South Korea
[3] Ecole Polytech Fed Lausanne EPFL, Lab Polymeres, Inst Mat, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingn Chim, Lausanne, Switzerland
基金
新加坡国家研究基金会;
关键词
Anion exchange membrane; Branched structure; Durability; Fuel cells; Poly(aryl piperidinium)s; HYDROXIDE; POLYMER; CHALLENGES; IONOMERS;
D O I
10.1002/anie.202114892
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anion-exchange membrane fuel cells (AEMFCs) are a promising, next-generation fuel cell technology. AEMFCs require highly conductive and robust anion-exchange membranes (AEMs), which are challenging to develop due to the tradeoff between conductivity and water uptake. Here we report a method to prepare high-molecular-weight branched poly(aryl piperidinium) AEMs. We show that branching reduces water uptake, leading to improved dimensional stability. The optimized membrane, b-PTP-2.5, exhibits simultaneously high OH- conductivity (>145 mS cm(-1) at 80 degrees C), high mechanical strength and dimensional stability, good processability, and excellent alkaline stability (>1500 h) in 1 M KOH at 80 degrees C. AEMFCs based on b-PTP-2.5 reached peak power densities of 2.3 W cm(-2) in H-2-O-2 and 1.3 W cm(-2) in H-2-air at 80 degrees C. The AEMFCs can run stably under a constant current of 0.2 A cm(-2) over 500 h, during which the b-PTP-2.5 membrane remains stable.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] [Anonymous], 2019, FUT HYDR
  • [2] [Anonymous], 2019, ROAD MAP US HYDR EC
  • [3] [Anonymous], 2021, ANGEW CHEM-GER EDIT, V133, P7789
  • [4] Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells
    Chen, Nanjun
    Wang, Ho Hyun
    Kim, Sun Pyo
    Kim, Hae Min
    Lee, Won Hee
    Hu, Chuan
    Bae, Joon Yong
    Sim, Eun Seob
    Chung, Yong-Chae
    Jang, Jue-Hyuk
    Yoo, Sung Jong
    Zhuang, Yongbing
    Lee, Young Moo
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Anion exchange polyelectrolytes for membranes and ionomers
    Chen, Nanjun
    Lee, Young Moo
    [J]. PROGRESS IN POLYMER SCIENCE, 2021, 113
  • [6] Poly(Alkyl-Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm-2
    Chen, Nanjun
    Hu, Chuan
    Wang, Ho Hyun
    Kim, Sun Pyo
    Kim, Hae Min
    Lee, Won Hee
    Bae, Joon Yong
    Park, Jong Hyeong
    Lee, Young Moo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (14) : 7710 - 7718
  • [7] Hydrogen crossover in high-temperature PEM fuel cells
    Cheng, Xuan
    Zhang, Jianlu
    Tang, Yanghua
    Song, Chaojie
    Shen, Jun
    Song, Datong
    Zhang, Jiujun
    [J]. JOURNAL OF POWER SOURCES, 2007, 167 (01) : 25 - 31
  • [8] New roads and challenges for fuel cells in heavy-duty transportation
    Cullen, David A.
    Neyerlin, K. C.
    Ahluwalia, Rajesh K.
    Mukundan, Rangachary
    More, Karren L.
    Borup, Rodney L.
    Weber, Adam Z.
    Myers, Deborah J.
    Kusoglu, Ahmet
    [J]. NATURE ENERGY, 2021, 6 (05) : 462 - 474
  • [9] Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells
    Firouzjaie, Horie Adabi
    Mustain, William E.
    [J]. ACS CATALYSIS, 2020, 10 (01) : 225 - 234
  • [10] Anion exchange membrane fuel cells: Current status and remaining challenges
    Gottesfeld, Shimshon
    Dekel, Dario R.
    Page, Miles
    Bae, Chulsung
    Yan, Yushan
    Zelenay, Piotr
    Kim, Yu Seung
    [J]. JOURNAL OF POWER SOURCES, 2018, 375 : 170 - 184