The second largest number of points on plane curves over finite fields

被引:2
作者
Homma, Masaaki [1 ]
Kim, Seon Jeong [2 ]
机构
[1] Kanagawa Univ, Dept Math & Phys, Hiratsuka, Kanagawa 2591293, Japan
[2] Gyeongsang Natl Univ, Dept Math & RINS, Jinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Finite field; Basis of the ideal; Plane curve;
D O I
10.1016/j.ffa.2017.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A basis of the ideal of the complement of a linear subspace in a projective space over a finite field is given. As an application, the second largest number of points of plane curves of degree d over the finite field of q elements is also given for d >= q + 1. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 93
页数:14
相关论文
共 50 条
[21]   Digital signature with elliptic curves over the finite fields [J].
Alinejad, M. ;
Zadeh, S. Hassan ;
Biranvand, N. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05) :1289-1301
[22]   ON THE MERTENS CONJECTURE FOR ELLIPTIC CURVES OVER FINITE FIELDS [J].
Humphries, Peter .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :19-32
[23]   EFFICIENT ENCODINGS TO HYPERELLIPTIC CURVES OVER FINITE FIELDS [J].
Kashani, Amirmehdi Yazdani ;
Daghigh, Hassan .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (05) :673-681
[24]   A note on some Picard curves over finite fields [J].
Kazemifard, Ahmad ;
Tafazolian, Saeed .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :107-122
[25]   The groups of points on abelian surfaces over finite fields [J].
Rybakov, Sergey .
ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 :151-158
[26]   The groups of points on abelian varieties over finite fields [J].
Rybakov, Sergey .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02) :282-288
[27]   Congruences for rational points on varieties over finite fields [J].
N. Fakhruddin ;
C. S. Rajan .
Mathematische Annalen, 2005, 333 :797-809
[28]   Groups of points on abelian threefolds over finite fields [J].
Kotelnikova, Yulia .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 58 :177-199
[29]   Toward determination of optimal plane curves with a fixed degree over a finite field [J].
Homma, Masaaki ;
Kim, Seon Jeong .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (03) :240-253
[30]   Modular Counting of Rational Points over Finite Fields [J].
Daqing Wan .
Foundations of Computational Mathematics, 2008, 8 :597-605