ON THE RANK AND EXPONENT OF THE FIXED POINTS OF COPRIME ACTIONS

被引:1
|
作者
Kizmaz, M. Y. [1 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
fixed point; coprime action; special rank;
D O I
10.1007/s10474-021-01198-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a group acting on a p-group P coprimely. We show that if A centralizes some specified abelian subgroups of P, then A acts trivially on P. As a consequence of this, we obtain that the special rank of C-P(A) is strictly less than that of P unless the action of A on P is trivial. Secondly, we prove that if A acts on a group G coprimely and [G, A] = G, then the exponent of C-G(A)/(C-G(A))' divides vertical bar G : C-G(A)vertical bar.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 50 条
  • [31] Analytic actions on compact surfaces and fixed points
    Turiel, FJ
    MANUSCRIPTA MATHEMATICA, 2003, 110 (02) : 195 - 201
  • [32] Global fixed points for nilpotent actions on the torus
    Firmo, S.
    Ribon, J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) : 3339 - 3367
  • [33] NONEXPANSIVE ACTIONS OF TOPOLOGICAL SEMIGROUPS AND FIXED POINTS
    HOLMES, RD
    LAU, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 656 - &
  • [34] FIXED POINTS EM ALGORITHM AND NONNEGATIVE RANK BOUNDARIES
    Kubjas, Kaie
    Robeva, Elina
    Sturmfels, Bernd
    ANNALS OF STATISTICS, 2015, 43 (01): : 422 - 461
  • [35] Rank deficiency in coprime sampling
    Chen Yu
    Zhao Yijiu
    Yan Haoyue
    Huang Jianguo
    Zheng Yanze
    Mei Sitao
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1740 - 1746
  • [36] A NOTE ON FIXED POINTS OF ABELIAN ACTIONS IN DIMENSION ONE
    Boronski, J. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1653 - 1655
  • [37] FIXED-POINTS OF ANALYTIC ACTIONS OF TOPOLOGICAL SEMIGROUPS
    MITCHELL, T
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A155 - A155
  • [38] Representations at fixed points of smooth actions of cyclic groups
    Yang, HJ
    TOPOLOGY AND ITS APPLICATIONS, 1996, 69 (03) : 199 - 204
  • [39] Non-Hamiltonian actions with isolated fixed points
    Susan Tolman
    Inventiones mathematicae, 2017, 210 : 877 - 910
  • [40] Infinitesimal Actions of Around Isolated Fixed Points in the Plane
    Guillot, Adolfo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (02) : 433 - 451