Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia

被引:12
|
作者
Han, Kyu-Hyun [1 ]
Kim, Ae-Kyeong [1 ]
Kim, Min-Hee [1 ]
Kim, Do-Hyung [1 ]
Go, Ha-Nl [1 ]
Kang, Donglim [1 ]
Chang, Jong Wook [2 ]
Choi, Soon Won [3 ]
Kang, Kyung-Sun [3 ]
Kim, Dong-ik [1 ]
机构
[1] Sungkyunkwan Univ, Div Vasc Surg, Samsung Med Ctr, Sch Med, Seoul 06351, South Korea
[2] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Res Inst Future Med, Seoul 06351, South Korea
[3] Seoul Natl Univ, Res Inst Vet Sci, Coll Vet Med, Seoul 151747, South Korea
关键词
Angiogenesis; Ischemia; Hypoxia; Mesenchymal stem cells; ENDOTHELIAL-CELLS; LIMB ISCHEMIA; GROWTH-FACTOR; TUMOR-GROWTH; RECEPTOR; KINASE; EXPRESSION; CANCER; TRANSPLANTATION; CONTRIBUTES;
D O I
10.1016/j.tice.2017.09.006
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The aim of the present study was to investigate protein profiles of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) cultured in normoxic (21% O-2) and hypoxic (1% O-2) conditions, and evaluate oxygenation effects on angiogenesis in an ischemic hindlimb mouse model using a modified ischemic scoring system. Hypoxic conditions did not change the expression of phenotypic markers and increased adipogenesis and chondrogenesis. Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), TGF-beta RII, and vascular endothelial growth factor (VEGF) were upregulated in the conditioned medium of hypoxic hUCB-MSCs, which are commonly related to angiogenesis and proliferation of biological processes by Gene Ontology. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, significant enrichment of the phosphorylation of abelson murine leukemia viral oncogene homolog 1 (ABL1) (Phospho-Tyr204) and B-cell lymphoma-extra large (BCL-XL) (Phospho-Thr47) as anti-apoptotic pathways was observed in hypoxic hUCB-MSCs. Furthermore, hypoxic conditions induced proliferation and migration, and reduced apoptosis of hUCBMSCs in vitro. Based on the results of protein antibody array, we evaluated the angiogenic effects of injecting normoxic or hypoxic hUCB-MSCs (1 x 10(6)) into the ischemic hindlimb muscles of mice. Ischemic scores and capillary generation were significantly greater in the hypoxic hUCB-MSC injection group than in the normoxic hUCB-MSC group. Our findings demonstrate that culturing hUCB-MSCs in hypoxic conditions not only significantly enriches phosphorylation in the anti-apoptosis pathway and enhances the secretion of several angiogenic proteins from cells, but also alleviates ischemic injury of hindlimb of mice.
引用
收藏
页码:680 / 690
页数:11
相关论文
共 50 条
  • [31] Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells
    Roura, Santiago
    Farre, Jordi
    Hove-Madsen, Leif
    Prat-Vidal, Cristina
    Soler-Botija, Carolina
    Galvez-Monton, Carolina
    Vilalta, Marta
    Bayes-Genis, Antoni
    BASIC RESEARCH IN CARDIOLOGY, 2010, 105 (03) : 419 - 430
  • [32] In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells'into hepatocyte-like cells
    Hong, SH
    Gang, EJ
    Jeong, JA
    Ahn, CY
    Hwang, SH
    Yang, IH
    Park, HK
    Han, H
    Kim, H
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 330 (04) : 1153 - 1161
  • [33] Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action
    Park, Jong Hee
    Hwang, Inah
    Hwang, Soo Han
    Han, Hoon
    Ha, Hunjoo
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2012, 98 (03) : 465 - 473
  • [34] Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in the Cultured Rabbit Intervertebral Disc A Novel Cell Source for Disc Repair
    Anderson, D. Greg
    Markova, Dessislava
    An, Howard S.
    Chee, Ana
    Enomoto-Iwamoto, Motomi
    Markov, Vladimir
    Saitta, Biagio
    Shi, Peng
    Gupta, Chander
    Zhang, Yejia
    AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2013, 92 (05) : 420 - 429
  • [35] Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibit, But Adipose Tissue-Derived Mesenchymal Stem Cells Promote, Glioblastoma Multiforme Proliferation
    Akimoto, Keiko
    Kimura, Kenichi
    Nagano, Masumi
    Takano, Shingo
    Salazar, Georgina To'a
    Yamashita, Toshiharu
    Ohneda, Osamu
    STEM CELLS AND DEVELOPMENT, 2013, 22 (09) : 1370 - 1386
  • [36] Umbilical cord blood-derived mesenchymal stem cells: New therapeutic weapons for idiopathic dilated cardiomyopathy?
    Roura, Santiago
    Galvez-Monton, Carolina
    Bayes-Genis, Antoni
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2014, 177 (03) : 809 - 818
  • [37] Transplantation of umbilical cord blood-derived mesenchymal stem cells as therapy for adriamycin induced-cardiomyopathy
    Zhang, Jingyue
    Zhang, Shiheng
    Yang, Yueming
    Liu, Ling
    BIOENGINEERED, 2022, 13 (04) : 9564 - 9574
  • [38] Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells
    Mayani, H
    Lansdorp, PM
    STEM CELLS, 1998, 16 (03) : 153 - 165
  • [39] Human umbilical cord blood-derived mesenchymal stem cells improve glucose homeostasis in rats with liver cirrhosis
    Jung, Kyung Hee
    Uhm, Yun-Kyung
    Lim, Yun Jeong
    Yim, Sung-Vin
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2011, 39 (01) : 137 - 143
  • [40] Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
    Bougioukli, Sofia
    Saitta, Biagio
    Sugiyama, Osamu
    Tang, Amy H.
    Elphingstone, Joseph
    Evseenko, Denis
    Lieberman, Jay R.
    HUMAN GENE THERAPY, 2019, 30 (07) : 906 - 917