Li2FeSiO4 nanorod as high stability electrode for lithium-ion batteries

被引:10
作者
Hsu, Chun-Han [1 ]
Shen, Yu-Wen [1 ]
Chien, Li-Hsuan [1 ]
Kuo, Ping-Lin [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
关键词
Lithium-ion battery; Cathode; Li2FeSiO4; Hydrothermal process; Nanomaterial; Energy storage; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL;
D O I
10.1007/s11051-014-2810-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li2FeSiO4 (LFS) nanorods, with a diameter of 80-100 nm and length of 0.8-1.0 mu m, were synthesized successfully from a mixture of LiOH, FeSO4, and SiO2 nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 degrees C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathodematerials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g (-1) in the voltage window of 1.8-4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[2]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[3]   Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries [J].
Chen, Weihua ;
Lan, Meng ;
Zhu, Dan ;
Wang, Cuilian ;
Xue, Shangru ;
Yang, Changchun ;
Li, Zexian ;
Zhang, Jianmin ;
Mi, Liwei .
RSC ADVANCES, 2013, 3 (02) :408-412
[4]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[5]   Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J].
Gong, Z. L. ;
Li, Y. X. ;
He, G. N. ;
Li, J. ;
Yang, Y. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A60-A63
[6]   High-Speed Lithium-Ion Transfer inside Mesoporous Core-Shell LiFePO4/Carbon-Sphere Cathodes [J].
Hsu, Chun-Han ;
Liao, Hsin-Yi ;
Kuo, Ping-Lin .
ENERGY TECHNOLOGY, 2014, 2 (04) :409-413
[7]   Diffusion Mechanism of Polaron-Li Vacancy Complex in Cathode Material Li2FeSiO4 [J].
Kieu My Bui ;
Van An Dinh ;
Ohno, Takahisa .
APPLIED PHYSICS EXPRESS, 2012, 5 (12)
[8]   High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks [J].
Kuo, Ping-Lin ;
Hsu, Chun-Han ;
Chiang, Huan-Te ;
Hsu, Jung-Mu .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (12)
[9]   Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study [J].
Liivat, Anti ;
Thomas, John O. .
SOLID STATE IONICS, 2011, 192 (01) :58-64
[10]   Morphology and electrical properties of conductive carbon coatings for cathode materials [J].
Moskon, Joze ;
Dominko, Robert ;
Cerc-Korosec, Romana ;
Gaberscek, Miran ;
Jamnik, Janez .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :683-688