Generalized derivative and π-derivative for set-valued functions

被引:138
作者
Chalco-Cano, Y. [1 ]
Roman-Flores, H. [2 ]
Jimenez-Gamero, M. D. [3 ]
机构
[1] Univ Tarapaca, Dept Matemat, Arica, Chile
[2] Univ Tarapaca, Inst Invest, Arica, Chile
[3] Univ Seville, Dpto Estadist & IO, E-41012 Seville, Spain
关键词
Differentiable set-valued functions; pi-Derivative for set-valued functions; Interval differential equations; FUZZY DIFFERENTIAL-EQUATIONS; EXISTENCE; INTERVAL; INCLUSIONS; CALCULUS;
D O I
10.1016/j.ins.2011.01.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the generalized derivative and the pi-derivative for interval-valued functions. We show the connections between these derivatives. Some illustrative examples and applications to interval differential equations and fuzzy functions are presented. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2177 / 2188
页数:12
相关论文
共 46 条
[1]  
Agarwal RP, 2007, DIFFER EQU APPL, V5, P1
[2]   Toward the existence and uniqueness of solutions of second-order fuzzy differential equations [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Barkhordari, M. .
INFORMATION SCIENCES, 2009, 179 (08) :1207-1215
[3]   Solving fuzzy differential equations by differential transformation method [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Motamedi, N. .
INFORMATION SCIENCES, 2009, 179 (07) :956-966
[4]  
[Anonymous], 1985, Computational functional analysis
[5]  
[Anonymous], P JOINT 2009 INT FUZ
[6]  
Aseev S. M., 1986, Proc. Steklov Inst. Math, V167, P23
[7]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[8]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI
[9]   Introduction: Set-valued analysis in control theory [J].
Aubin, JP ;
Frankowska, H .
SET-VALUED ANALYSIS, 2000, 8 (1-2) :1-9
[10]   A DIFFERENTIAL CALCULUS FOR MULTIFUNCTIONS [J].
BANKS, HT ;
JACOBS, MQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 29 (02) :246-&