Synthesis, characterization, fluorescence labeling and cellular internalization of novel amine-functionalized poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic block copolymers

被引:35
|
作者
Yan, Jinliang [1 ,2 ]
Ye, Zhaoyang [1 ]
Luo, Houyong [1 ]
Chen, Min [1 ]
Zhou, Yan [1 ]
Tan, Wensong [1 ]
Xiao, Yan [2 ]
Zhang, Yan [2 ]
Lang, Meidong [1 ,2 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Bioreactor Engn, Sch Bioengn, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
RING-OPENING POLYMERIZATION; EPSILON-CAPROLACTONE; POLYESTER BLOCK; NANO-CONTAINERS; DRUG; MICELLES; POLYMERS; POLY(EPSILON-CAPROLACTONE); SOLUBILIZATION; DELIVERY;
D O I
10.1039/c0py00391c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We report in this paper a facile way to prepare novel amine-functionalized monomethoxy-poly (ethylene glycol)-b-poly(epsilon-caprolactone) (mPEG-b-PCL) amphiphilic block copolymers, which are subsequently fluorescently labeled. In our synthetic route, monomethoxy-poly(ethylene glycol)-b-poly [epsilon-caprolactone-co-gamma-(carbamic acid benzyl ester)-epsilon-caprolactone] [mPEG-b-P(CL-co-CABCL)] copolymers were synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) and a newly developed monomer, gamma-(carbamic acid benzyl ester)-epsilon-caprolactone (CABCL) at varied ratios using mPEG as macroinitiator and Sn(Oct)(2) as catalyst. Subsequent deprotection upon removal of carbobenzoxy (Cbz) group yielded monomethoxy-poly(ethylene glycol)-b-poly(epsilon-caprolactone-co-gamma-amino-epsilon-caprolactone) [mPEG-b-P(CL-co-ACL)] copolymers bearing primary amine functional groups on the PCL block. The structures of polymers were characterized with NMR, FT-IR and GPC techniques. These amphiphilic block copolymers self-assembled into micelles in aqueous solution and the critical micelle concentration (CMC) was dependent on the compositions of the copolymers. In addition, the particle size and morphology of micelles were studied with DLS and TEM, respectively. In vitro study demonstrated that the micelles were nontoxic to human fibroblasts based on MTT and live/dead assays. Furthermore, a proof-of-concept usage of amino groups for bioconjugation was illustrated by tagging the copolymer with a fluorophore, fluorescein isothiocyanate (FITC). Internalization of FITC-labeled micelles by fibroblast cells was observed under fluorescence microscopy. Through facile conjugation of chemical moieties such as drugs, peptides, proteins or fluorophores, micelles prepared with these amine-functionalized mPEG-b-PCL copolymers hold great promise in biomedical applications.
引用
收藏
页码:1331 / 1340
页数:10
相关论文
共 50 条
  • [1] Synthesis and characterization of amine-functionalized amphiphilic block copolymers based on poly(ethylene glycol) and poly(caprolactone)
    Remant, Bahadur
    Bhattarai, Shanta Raj
    Aryal, Santosh
    Bhattarai, Narayan
    Lee, Byoung Min
    Kim, Hak Yong
    POLYMER INTERNATIONAL, 2007, 56 (04) : 518 - 524
  • [2] Microwave-Assisted Synthesis of Poly(ε-caprolactone)-block-poly(ethylene glycol) and Poly(lactide)-block-poly(ethylene glycol)
    Karagoz, Ayse
    Dincer, Sevil
    NEW FRONTIERS IN MACROMOLECULAR SCIENCE, 2010, 295 : 131 - 137
  • [3] Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers
    Letchford, K
    Zastre, J
    Liggins, R
    Burt, H
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2004, 35 (02) : 81 - 91
  • [4] Synthesis of mesoporous silica by templating of amphiphilic poly (ethylene glycol)-block-poly (propylene glycol)-block-poly(ethylene glycol)
    Cui, XG
    Cho, WJ
    Ha, CS
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 353 : 309 - 316
  • [5] Synthesis and physicochemical characterization of amphiphilic block copolymer self-aggregates formed by poly(ethylene glycol)-block-poly(Ε-caprolactone)
    Choi, Changyong
    Chae, Su Young
    Kim, Tai-Hyoung
    Kweon, Jung Keon
    Cho, Chong Su
    Jang, Mi-Kyeong
    Nah, Jae-Woon
    Journal of Applied Polymer Science, 1600, 99 (06): : 3520 - 3527
  • [6] Synthesis and physicochemical characterization of Amphiphilic block copolymer self-aggregates formed by poly(ethylene glycol)-block-poly(ε-caprolactone)
    Choi, C
    Chae, SY
    Kim, TH
    Kweon, JK
    Cho, CS
    Jang, MK
    Nah, JW
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 99 (06) : 3520 - 3527
  • [7] Novel synthesis of biodegradable amphiphilic linear and star block copolymers based on poly(ε-caprolactone) and poly(ethylene glycol)
    Lemmouchi, Yahia
    Perry, Michael C.
    Amass, Allan J.
    Chakraborty, Khirud
    Schacht, Etienne
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (17) : 3975 - 3985
  • [8] Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers
    Mahajan, S
    Renker, S
    Simon, PFW
    Gutmann, JS
    Jain, A
    Gruner, SM
    Fetters, LJ
    Coates, GW
    Wiesner, U
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2003, 204 (08) : 1047 - 1055
  • [9] SYNTHESIS AND CHARACTERIZATION OF POLY(ACRYLONITRILE)-BLOCK-POLY(ETHYLENE GLYCOL)-BLOCK-POLY(ACRYLONITRILE) COPOLYMER
    NAGARAJAN, S
    SRINIVASAN, KSV
    JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1993, A30 : 397 - 405
  • [10] Synthesis and characterization of a novel amphiphilic poly (ethylene glycol)-poly (ε-caprolactone) graft copolymers
    Zhang, Xiao-yan
    Tong, Bei-bei
    Wu, Tao
    Wang, Yu-dong
    DESIGNED MONOMERS AND POLYMERS, 2016, 19 (07) : 661 - 668