The average behavior of the coefficients of Dedekind zeta function over square numbers

被引:13
作者
Lue, Guangshi [1 ]
Yang, Zhishan [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Coefficients of Dedekind zeta function; Galois field; Divisor problem;
D O I
10.1016/j.jnt.2011.01.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in the average behavior of the coefficients of Dedekind zeta function over square numbers. In Galois fields of degree d which is odd, when l >= 1 is an integer, we have Sigma(n <= x)a(n(2))(l) = xP(m) (logx) + O(x(1)-3/md+6+epsilon), where m = ((d + 1)/2)(l)d(l-1), P(m)(t) is a polynomial in t of degree m - 1, and epsilon > 0 is an arbitrarily small constant. By using our method, we also rectify the main terms of the k-dimensional divisor problem in some Galois fields over square numbers established by Deza and Varukhina (2008) [DV]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1924 / 1938
页数:15
相关论文
共 13 条
[1]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[2]  
DRZA E, 2008, DISCRETE MATH, V308, P4892
[3]   12TH POWER MOMENT OF THE RIEMANN-FUNCTION [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1978, 29 (116) :443-462
[4]   THE GROWTH-RATE OF THE DEDEKIND ZETA-FUNCTION ON THE CRITICAL LINE [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1988, 49 (04) :323-339
[5]  
Ivic A., 1985, The Riemann Zeta-Function
[6]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[7]  
Landau E., 1927, EINFUHRUNG ELEMENTAR
[8]  
LU GS, 2010, SCI CHINA A, V53
[9]  
LU GS, 2010, ACTA MATH HUNGAR
[10]  
MEURMAN T, 1984, ANN ACAD SCI FENN-M, P1