An adaptive multi-element generalized polynomial chaos method for stochastic differential equations

被引:430
作者
Wan, XL [1 ]
Karniadakis, GE [1 ]
机构
[1] Brown Univ, Ctr Fluid Mech, Div Appl Math, Providence, RI 02912 USA
关键词
uncertainty; polynomial chaos; discontinuities;
D O I
10.1016/j.jcp.2005.03.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as well as advection-diffusion problems. The new method is similar to spectral element method for deterministic problems but with h-p discretization of the random space. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:617 / 642
页数:26
相关论文
共 17 条
[1]   THE ORTHOGONAL DEVELOPMENT OF NON-LINEAR FUNCTIONALS IN SERIES OF FOURIER-HERMITE FUNCTIONALS [J].
CAMERON, RH ;
MARTIN, WT .
ANNALS OF MATHEMATICS, 1947, 48 (02) :385-392
[2]   Solution of stochastic partial differential equations using Galerkin finite element techniques [J].
Deb, MK ;
Babuska, IM ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (48) :6359-6372
[3]   Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach [J].
Ghanem, R ;
Red-Horse, J .
PHYSICA D, 1999, 133 (1-4) :137-144
[4]  
Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4
[5]  
Karniadakis G, 2004, SPECTRAL HP ELEMENT
[6]  
Lawden D.F., 1989, Applied mathematical sciences
[7]   Multi-resolution analysis of Wiener-type uncertainty propagation schemes [J].
Le Maître, OP ;
Najm, HN ;
Ghanem, RG ;
Knio, OM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (02) :502-531
[8]   Uncertainty propagation using Wiener-Haar expansions [J].
Le Maître, OP ;
Knio, OM ;
Najm, HN ;
Ghanem, RG .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) :28-57
[9]  
Loeve M., 1978, GRADUATE TEXTS MATH, VII, DOI DOI 10.1007/978-1-4684-9466-8
[10]   DYNAMICAL PROPERTIES OF TRUNCATED WIENER-HERMITE EXPANSIONS [J].
ORSZAG, SA ;
BISSONNETTE, LR .
PHYSICS OF FLUIDS, 1967, 10 (12) :2603-+