Differential Identification using Mixtures Ensemble ( DIME) is a package for identification of biologically significant differential binding sites between two conditions using ChIP-seq data. It considers a collection of finite mixture models combined with a false discovery rate (FDR) criterion to find statistically significant regions. This leads to a more reliable assessment of differential binding sites based on a statistical approach. In addition to ChIP-seq, DIME is also applicable to data from other high-throughput platforms.
机构:
Ohio State Univ, Dept Stat, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA
Khalili, Abbas
;
Huang, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Ctr Comprehens Canc, Div Human Canc Genet, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA
Huang, Tim
;
Lin, Shili
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA
机构:
Ohio State Univ, Dept Stat, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA
Khalili, Abbas
;
Huang, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Ctr Comprehens Canc, Div Human Canc Genet, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA
Huang, Tim
;
Lin, Shili
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USAOhio State Univ, Dept Stat, Columbus, OH 43210 USA