Hausdorff dimension distribution of quasiconformal mappings on the heisenberg group

被引:36
作者
Balogh, ZM [1 ]
机构
[1] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2001年 / 83卷 / 1期
关键词
D O I
10.1007/BF02790265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct quasiconformal mappings on the Heisenberg group which change the Hausdorff dimension of Cantor-type sets in an arbitrary fashion. On the other hand, we give examples of subsets of the Heisenberg group whose Hausdorff dimension cannot be lowered by any quasiconformal mapping. For a general set of a certain Hausdorff dimension we obtain estimates of the Hausdorff dimension of the image set in terms of the magnitude of the quasiconformal distortion.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 1990, FRACTAL GEOMETRY
[2]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[3]  
Balogh ZM, 2000, DUKE MATH J, V101, P555
[4]  
Balon R, 1999, J SEX MARITAL THER, V25, P259
[5]  
Basmajian A, 1998, INVENT MATH, V131, P85
[6]  
Bellaiche A., 1996, PROGR MATH, V144, P4
[7]  
Bishop CJ, 1999, ANN ACAD SCI FENN-M, V24, P397
[8]  
BISHOP CJ, CONFORMAL DIMENSION
[9]  
BISHOP CJ, IN PRESS ANN ACAD SC
[10]   AT THE BOUNDARY OF SOME HYPERBOLIC POLYHEDRA [J].
BOURDON, M .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (01) :119-141